整体来说,RT-DETR的模型结构可以分为两大部分,分别是图像编码器和Transformer解码器,如下图所示。 图3. 基于Transformer的通用视觉目标检测的主流框架结构 图像编码器的作用就是将输入进来的浅层的像素做一次充分的压缩,从中提取出对本任务有益的高级特征,例如,我们可以使用Vision Transformer来达到这一目的,或者使用...
此外RT-DETR的参数量FLOPs上也非常可观,换用HGNetv2后更优,虽然模型结构类似DETR但设计的这么轻巧还是很厉害了。 和YOLO对比 (2)对比DETR系列: DETR类在COCO上常用的尺度都是800x1333,以往都是以Res50 backbone刷上45 mAP甚至50 mAP为目标,而RT-DETR在采用了YOLO风格的640x640尺度情况下,也不需要熬时长训几...
正如YOLOX第一个提出AnchorFree的YOLO,思路上的突破往往更让人记住,RT-DETR正是第一个提出以DETR思路去解决甚至推翻YOLO的实时检测模型,称之为“YOLO终结者”并不为过。 不过CNN和YOLO系列以往的技术都已经发展的非常成熟了,使用模型也不止是看精度速度,根据自己的实际需求和条件去选择才是最优的,CNN和YOLO系列应...
【前言】RT-DETR是由百度近期推出的DETR-liked目标检测器,该检测器由HGNetv2、混合编码器和带有辅助预测头的Transformer编码器组成,整体结构如下所示。 本文将采用RT-DETR两种不同风格的onnx格式,使用onnxruntime20行代码,无需nms操作即可实现简易部署推理. 一、原生onnx+ort推理方式 使用以下命令抽取出模型配置文件...
RT-DETR结构设计 近年来,得益于研究者们在加速训练收敛和降低优化难度上做出的努力, DETR 系列模型已经获得了优秀的性能。然而,DETR 与现有实时检测器在速度上存在巨大差距,因此,将其推向实时化面临巨大的挑战。我们在分析了 DETR 变体模型的架构中各组件对速度和精度的影响后,将主要优化目标定在编码器部分。现有的...
所提出的RT-DETR由Backbone、混合编码器和带有辅助预测头的Transformer解码器组成。模型体系结构的概述如图3所示。 具体来说: 首先,利用Backbone的最后3个阶段的输出特征作为编码器的输入; 然后,混合编码器通过尺度内交互和跨尺度融合将多尺度特征转换为一系列图像特征(如第4.2节所述); ...
所提出的RT-DETR由Backbone、混合编码器和带有辅助预测头的Transformer解码器组成。模型体系结构的概述如图3所示。 具体来说: 首先,利用Backbone的最后3个阶段的输出特征作为编码器的输入; 然后,混合编码器通过尺度内交互和跨尺度融合将多尺度特征转换为一系列图像特征(如第4.2节所述); ...
RT-DETR 网络模型主要由两个部分组成,分别是 ResNet 或者 HGNetv2 构成的 backbone 和 RT-DETR 构成的检测头。在模型的 backbone 中有大量的卷积层,此外在检测头中也有大量的矩阵乘计算,这些操作均可进行量化,从模型结构上分析来看,RT-DETR 模型拥有足够的量化加速潜力。我们使用了量化分析工具分析了各层的...
转化模型为onnx形式: paddle2onnx --model_dir=./output_inference/rtdetr_hgnetv2_l_6x_coco/ --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 16 --save_file rtdetr_hgnetv2_l_6x_coco.onnx 1. 抽取后的onnx可视化如下: ...
RT-DETR模型结构 (1)Backbone:采用了经典的ResNet和百度自研的HGNet-v2两种,backbone是可以Scaled,HGNetv2的L和X两个版本,也分别对标经典的ResNet50和ResNet101,不同于DINO等DETR类检测器使用最后4个stage输出,RT-DETR为了提速只需要最后3个,这样也符合YOLO的风格; ...