SAM 使用基于 Vision Transformer (ViT)的预训练掩码自编码器将图像处理成中间特征,并将先前的提示编码为嵌入Tokens。随后,掩膜解码器中的交叉注意力机制促进了图像特征和提示嵌入之间的交互,最终产生掩膜输出。该过程可以表达为: 2.2 SAM 的实例分割扩展 除了本文中提出的 RSPrompter 之外,还介绍了其他三种基于 SAM ...
RSPrompter的目标是学习如何为SAM生成prompt输入,使其能够自动获取语义实例级掩码。相比之下,原始的SAM需要额外手动制作prompt,并且是一种类别无关的分割方法。RSPrompter的设计理念不局限于SAM模型,也可以应用于其他基础模型。基于这一理念,我们设计了两种具体的实现方案:基于预设锚点的RSPrompter-anchor和基于查询和最优...
RSPrompter的目标是学习如何为SAM生成prompt输入,使其能够自动获取语义实例级掩码。相比之下,原始的SAM需要额外手动制作prompt,并且是一种类别无关的分割方法。RSPrompter的设计理念不局限于SAM模型,也可以应用于其他基础模型。基于这一理念,我们设计了两种具体的实...
RSPrompter的目标是学习如何为SAM生成prompt输入,使其能够自动获取语义实例级掩码。相比之下,原始的SAM需要额外手动制作prompt,并且是一种类别无关的分割方法。RSPrompter的设计理念不局限于SAM模型,也可以应用于其他基础模型。基于这一理念,我们设计了两种具体的实现方案:基于预设锚点的RSPrompter-anchor和基于查询和最优...