RoBERTa-wwm-ext模型相比于BERT主要有两大方面的优化,第一是RoBERTa预训练模型,第二是基于全词掩码的中文训练方式;然后重点分析RoBERTa预训练模型的六大优化项,包括动态Mask、取消NSP任务、设置更大的batchsize训练、使用更多的数据同时训练更久、调整优化器Adam参数和使用Byte level构建词表等优化策略;最后分析了基于全...
因为谷歌发布的BERT-Base, Chinese模型里中文是以字为粒度进行切分,在BERT预训练过程中基于掩码的Masked Language Model(MLM)任务中也以字粒度进行Mask操作。BERT-wwm针对这个问题进行一系列中文式的改造,充分考虑传统NLP中的中文分词操作,以词为粒度进行Mask操作,也就是Whole Word Masking(wwm)操作。下面直接通过一个...
因为谷歌发布的BERT-Base, Chinese模型里中文是以字为粒度进行切分,在BERT预训练过程中基于掩码的Masked Language Model(MLM)任务中也以字粒度进行Mask操作。BERT-wwm针对这个问题进行一系列中文式的改造,充分考虑传统NLP中的中文分词操作,以词为粒度进行Mask操作,也就是Whole Word Masking(wwm)操作。下面直接通过一个...
项目地址:https://github.com/ymcui/Chinese-BERT-wwm 中文RoBERTa-wwm-ext 本次发布的中文RoBERTa-wwm-ext结合了中文Whole Word Masking技术以及RoBERTa模型的优势,得以获得更好的实验效果。该模型包含如下特点: 预训练阶段采用wwm策略进行mask(但没有使用dynamic masking) 取消了Next Sentence Prediction(NSP) 不再采...
RoBERTa-wwm-base模型可以通过以下链接下载: [ 你可以使用transformers库中的AutoModel和AutoTokenizer类来加载和使用模型。 fromtransformersimportAutoModel,AutoTokenizer model_name="hfl/chinese-roberta-wwm-ext"model=AutoModel.from_pretrained(model_name)tokenizer=AutoTokenizer.from_pretrained(model_name) ...
Chinese MRC roberta_wwm_ext_large 使用大量中文MRC数据训练的roberta_wwm_ext_large模型,详情可查看:https://github.com/basketballandlearn/MRC_Competition_Dureader 此库发布的再训练模型,在 阅读理解/分类 等任务上均有大幅提高 (已有多位小伙伴在Dureader-2021等多个比赛中取得top5的成绩😁) 模型/数据集Dure...