Files main .github assets cmake config data docker docs include launch model script src .clang-tidy .gitignore CMakeLists.txt LICENSE README.md README_cn.md package.xml RangeNet-TensorRT 🎉 This project has b
RangeNet-TensorRT 🎉 This project has been a pleasure, allowing me to repay technical debt, learn how to locate bugs during model deployment, gain experience with GitHub Actions, and explore CUDA programming. I greatly appreciate the valuable feedback from others that has contributed to improving...
# go to the root path of the catkin workspace $ cd ~/catkin_ws # use --verbose or -v to get verbose mode $ ./devel/lib/rangenet_lib/infer -h # help $ ./devel/lib/rangenet_lib/infer -p /path/to/the/pretrained/model -s /path/to/the/scan.bin --verbose # add process multi ...
RangeNet++的代码托管在GitHub上,仓库地址为:https://github.com/PRBonn/lidar-bonnetal。 克隆或下载代码仓库: 你可以使用Git命令克隆代码仓库到本地,或者在GitHub页面上直接下载代码包。 使用Git克隆仓库的命令如下: bash git clone https://github.com/PRBonn/lidar-bonnetal.git 查阅代码仓库中的文档: 克...
论文:RangeNet++: Fast and Accurate LiDAR Semantic Segmentation GitHub: GitHub - PRBonn/lidar-bonnetal: Semantic and Instance Segmentation of LiDAR point clouds for autonomous drivinggithub.com/PRBonn/lidar-bonnetal 摘要: 自动驾驶汽车中的感知通常通过一套不同的感知模式进行。鉴于大量公开可用的标记RG...
代码开源地址:github.com/PRBonn/lidar 二、提出背景 语义场景理解中的一个重要任务是语义分割任务。语义分割为输入模态中的每个数据点分配一个类标签。在本文中,作者明确解决了旋转 3D LiDAR 的语义分割问题,例如常用的 Velodyne 扫描仪。不幸的是,目前可用于 LiDAR 数据语义分割的大多数最先进的方法要么没有足够的...
Our experiments show that our approach outperforms state-of-the-art approaches, while still running online on a single embedded GPU. The code can be accessed at https://github.com/PRBonn/lidar-bonnetal.Andres MiliotoIgnacio VizzoJens BehleyCyrill Stachniss会议论文...
自动驾驶领域的环境感知通常是通过融合多个不同的传感器数据完成的。当前有很多标注过的开源RGB图像数据,同时出现了很多基于这些图像的识别算法。尤其是当前能够取得很好效果的高精度语义感知任务,通常是使用高分辨率相机完成的。这就使得,使用其他传感器的算法被大家所
我们实现并彻底评估了我们的方法,其中包括与最先进(方法)的一些比较。我们的实验显示,我们的方法优于最先进的方法,同时能够在单个嵌入式GPU上在线运行。代码见:https://github.com/PRBonn/lidar-bonnetal 图3 Border IoU(bIoU)以及距离随标签而改变的IoU。该图表明我们的后处理改善了IoU,并显着改善了borderIoU,这...
Rangenet lib in TensorRT8. Contribute to StephenYang190/rangenet_lib development by creating an account on GitHub.