将整幅图送入到卷积神经网络中进行特征提取,然后使用Selective Search算法在特征图上进行区域的输出,大大的减少了卷积的计算时间; 2、RoI Pooling层利用特征池化(RoI Pooling)方法进行特征尺度变换,这种方法可以使用任意大小的图像输入,使得训练更加的灵活、准确; 实际上就是对位置进行缩放,以匹配CNN得到的 feature map...
传统的目标检测算法有:SIFT(尺度不变特征变换)、HOG(方向梯度直方图)、DPM(一种基于组件的图像检测算法)等。 基于深度学习的目标检测算法可以分为两类:二阶算法(Two Stage)和一阶算法(One Stage) 二阶算法:先生成区域候选框,再通过卷积神经网络进行分类和回归修正。常见算法有 RCNN、SPPNet、Fast RCNN,Faster R...
Faster R-CNN 的主要创新是,它用一个快速神经网络代替了之前慢速的选择搜索算法(selective search algorithm)。具体而言,它引入了一个 region proposal 网络(RPN)。 RPN 工作原理: 在最后卷积得到的特征图上,使用一个 3x3 的窗口在特征图上滑动,然后将其映射到一个更低的维度上(如 256 维), 在每个滑动窗口的...
一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN等),它们是two-stage的,需要先通过算法产生目标候选框,也就是目标位置,然后再对候选框做分类与回归。 而另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个卷积神经网络CNN直接预测不同目标的类别与位置。 比较:第一类方法是准确度高一...
简介Faster R-CNN是继R-CNN,Fast R-CNN后基于Region-CNN的又一目标检测力作。Faster R-CNN发表于NIPS 2015。即便是2015年的算法,在现在也仍然有着广泛的应用以及不俗的精度。缺点是速度较慢,无法进行实时的目标检测。 Faster R-CNN是典型
Faster R-CNN的创新点在于,区域建议取决于通过CNN里的第一个卷积层前进传播过程中的图像特征。那为什么不对单独运行选择性搜索算法的方式进行改变,重复利用多个区域建议中相同的CNN结果呢? 图12:在Faster R-CNN中,单个CNN网络用来实现区域建议和对象分类。
图4.3 Faster RCNN算法过程示意图 从整个过程可以看出,Faster RCNN是一个两阶的算法,即RPN与 RCNN,这两步都需要计算损失,只不过前者还要为后者提供较好的感兴趣区域。 4.4 详解RPN RPN部分的输入、输出如下: 输入:feature map、物体标签,即训练集中所有物体的类别与边框位置。
RCNN丰富特征层次的结构提取算法,由Ross Girshick在2014年CVPR提出算法将目标检测推向新的里程碑。自从12年AlexNet在ImageNet上大放异彩之后,卷积神经网络重新引起大家的重视,同时手工设计特征方式逐渐退出舞台。RCNN是将CNN与SVM优势结合来突破目标检测的瓶颈,借助CNN强大的特征表达能力和SVM高效的分类性能。
在描述Object Dection算法时,测试阶段也是需要单独拎出来的,因为从训练过程可以看出,即使在训练时,我们也无法得到百分百准确的区域提议,需要经过繁琐的过程预处理数据。更别提被区域提议不知所措的测试阶段了。 测试阶段流程: 首先使用选择性搜索提取测试图片的区域提议(和训练时一样,2000+个)。
图1 RCNN架构 如图1,RCNN首先通过选择性搜索算法Selective Search从一组对象候选框中选择可能出现的对象框,然后将这些选择出来的对象框中的图像resize到某一固定尺寸的图像,并喂入到CNN模型(经过在ImageNet数据集上训练过的CNN模型,如AlexNet)提取特征,最后将提取出的特征送入到SVM分类器来预测该对象框中的图像是否...