k-means的聚类过程演示如下: k-means聚类过程 k-means聚类分析的原理虽然简单,但缺点也比较明显: 首先聚成几类这个k值你要自己定,但在对数据一无所知的情况下你自己也不知道k应该定多少; 初始质心也要自己选,而这个初始质心直接决定最终的聚类效果; 每一次迭代都要重新计算各个点与质心的距离,然后排序,时间成本较...
本文研究了数据挖掘的研究背景与意义,讨论了聚类算法的各种基本理论包括聚类的形式化描述和定义,聚类中的数据类型和数据结果,聚类的相似性度量和准则函数等。同时也探讨学习了基于划分的聚类方法的典型的聚类方法。本文重点集中学习了研究了 K-Means聚类算法的思想、原理以及该算法的优缺点。并运用K-means算法对所采集的...
在聚类分析中,K-means聚类算法是最常用的,它需要分析者先确定要将这组数据分成多少类,也即聚类的个数,这个通常可以用因子分析的方法来确定。比如我们可以用“nFactors”包的函数来确定最佳的因子个数,将因子数作为聚类数,不过关于聚类个数的确定还要考虑数据的实际情况与自身需求,这样分析才会更具有现实意义。 另外,...
kmeans算法涉及将n个案例中的每一个案例分配到指定k个类中的一个(指定k是为了最小化每个类内部差异,最大化类之间的差异)。 为避免遍历案例所有可能的组合来计算最优聚类,kemans使用了局部最优解的启发式过程,即对初始的类分配进行修正来判断是否提升了类内部的同质性。 kmeans聚类的两个阶段: 一是将案例分配...
以动态聚类为基础的K均值聚类方法是其中最简单而又有深度的一种方法。K均值的好处是我们可以在了解数据的情况下进行对样本的聚类,当然他也有自己的弱点就是对大数据的运作存在一定的局限。我们以R基础包自带的鸢尾花(Iris)数据进行聚类分析的演示。利用R语言的K均值聚类函数kmeans(),进行聚类,首先我们介绍下kmeans(...
(a)部分:k-means聚类使用k-means聚类法将数据集聚成2组。画一个图来显示聚类的情况使用k-means聚类法将数据集聚成3组。画一个图来显示聚类的情况(b)部分:层次聚类使用全连接法对观察值进行聚类。使用平均和单连接对观测值进行聚类。绘制上述聚类方法的树状图。
data=read.xlsx("股票盈利能力分析.xlsx") 初始聚类中心个数 初始聚类中心数目k的选取是一个较为困难的问题。传统的K-means聚类算法需要用户事先给定聚类数目k,但是用户一般情况下并不知道取什么样的k值对自己最有利、或者说什么样的k值对实际应用才是最合理的,这种情况下给出k值虽然对聚类本身会比较快速、高效,...
本文采用R软件对数据进行K-means聚类和层次聚类分析。R语言是统计领域广泛使用的,诞生于1980年左右的S语言的一个分支。 结果 将该数据集分为了三类。 plot(data[,3:4], fit$clust K-means算法将该样本集分为4类,其中最多的为cluster-2,有39886条记录,其次是cluster-3,有4561条记录,再者是cluster-1,为3514...
2. R语言中K-means代码示例 下面的代码示例展示了如何使用R语言进行K-means聚类,并分析结果。 代码示例 # 加载必要的包library(ggplot2)# 生成示例数据set.seed(123)# 为了可重复性data<-data.frame(x=rnorm(100),y=rnorm(100))data$group<-kmeans(data,centers=3)$cluster# 运行K-means聚类kmeans_result...
kmeans聚类的两个阶段: 一是将案例分配到初始的k个类中; 二是根据落入当前类的案例调整类的边界来更新分配。重复更新和分配多次,直到改变不会提升类的优度为止。 可通过尝试多次不同k的聚类分析来测试研究结果的稳健性。 2)kmeans运作的基本原理 ①使用距离来分配和更新类 ...