由它的名字我们可以初步得到,它也是 R-CNN系列算法,即两阶段目标检测算法;然后动态性其实体现在在训练目标检测模型过程中使用动态训练的策略。前面介绍过的Cascade R-CNN也可以看作是一种动态训练方法,它在训练过程中不断调整交并比阈值的大小以提高候选框的质量。而论文在训练过程中不仅关注了交并比阈值的动态设置,也...
特征计算:特征计算阶段使用CNN算法,文章中使用AlexNet卷积神经网络,首先裁剪出上述2000个目标可能出现的位置的图像,并将其reshape成 ,最后通过AlexNet进行特征计算,得到4096维的特征向量; 分类算法:分类阶段是单独训练了SVM的分类器,对每一个类别训练一个二分类的分类器(yes/no)。 针对于候选区域的reshape过程,在参考[...
1、分类,最早的RCNN是采用单分类的SVM,比如有十个感兴趣的物体则采用十个SVM分类器 2、定位,Selective Search出来的box不一定就是我所需要的box,可能会存在偏差,因此会采用回归来判断预测框与真实框的loss。 选择性搜索算法使用《Efficient Graph-Based Image Segmentation》论文里的方法产生初始的分割区域作为输入,通...
Fast RCNN也存在一定的问题,它仍然使用选择性搜索作为查找感兴趣区域的提议方法,这是一个缓慢且耗时的过程,每个图像检测对象大约需要2秒钟。 因此,又开发了另一种物体检测算法——Faster RCNN。 4.了解Faster RCNN 4.1. Faster RCNN的思想 Faster RCNN是Fast RCNN的修改版本,二者之间的主要区别在于,Fast RCNN使...
我们今天主要介绍的是R-CNN系列的有关算法。 2.1 selective search与R-CNN 传统目标检测方法中的区域选择过程用的是穷举法的思路而不是生成候选区域方法,每滑一个窗口检测一次,相邻窗口信息重叠高,检测速度慢,这导致出现非常多的无效区域的判断,一张普通大小的图像可以轻易提出超过1万的候选区域。那有没有办法减小候...
R CNN系列算法比较 R-CNN: (1)image input; (2)利用selective search 算法在图像中从上到下提取2000个左右的Region Proposal; (3)将每个Region Proposal缩放(warp)成227*227的大小并输入到CNN,将CNN的fc7层的输出作为特征; (4)将每个Region Proposal提取的CNN特征输入到SVM进行分类; ...
Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作。作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更带领团队获得终身成就奖,如今供职于Facebook旗下的FAIR。 这篇文章思路简洁,在DPM方法多年平台期后,效果提高显著。包括本文在内的一系列目标检测算法:RCNN,Fast RCNN,Faster RCNN代表当...
R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法。后面提到的Fast R-CNN、Faster R-CNN全部都是建立在R-CNN的基础上的。 传统目标检测流程: (1)区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比对图像进行遍历,时间复杂度高) ...
R-CNN算法流程: R-CNN算法流程图 第一步:通过Selective Search算法,在一张图像上生成1k~2k个候选框 Selective Search算法通过图像分割的方法得到一些原始区域,然后使用一些合并策略将这些区域合并,得到具有层次化的区域结构,这些区域结构就包含着可能需要的物体,如下图所示。