Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过...
Q-Learning是一种无模型的强化学习算法,特别适合于离散动作空间的问题。在机器人避障和路径规划中,Q-Learning可以帮助机器人学习如何在未知环境中寻找到达目标的最短路径,同时避免碰撞障碍物。 2.1Q-Learning原理 Q-Learning是一种基于价值迭代的算法,其目标是找到一个策略,使得在给定状态下选择的动作能够最大化未来累...
Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过...
Q-Learning是一种无模型的强化学习算法,特别适合于离散动作空间的问题。在机器人避障和路径规划中,Q-Learning可以帮助机器人学习如何在未知环境中寻找到达目标的最短路径,同时避免碰撞障碍物。 2.1 Q-Learning原理 Q-Learning是一种基于价值迭代的算法,其目标是找到一个策略,使得在给定状态下选择的动作能够最大化未来...
1.算法仿真效果 matlab2022a仿真结果如下: 2.算法涉及理论知识概要 Q-Learning是一种无模型的强化学习算法,它能够使代理(Agent)在与环境互动的过程中学习最优策略,无需了解环境的完整动态模型。在迷宫路线规划问题中,Q-Learning被用来指导代理找到从起点到终点的最优路径,通过不断尝试和学习来优化其行为决策。
1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 2.算法涉及理论知识概要 强化学习是一种机器学习方法,它使智能体能够在与环境交互的过程中学习如何采取行动以最大化累积奖励。Q-Learning是一种无模型的强化学习算法,特别适合于离散动作空间的问题。在机器人避障和路径规划中,Q-Learning可以帮助机器...
Q-Learning的QTable标签更新公式: Q-Learning的计算步骤: 1.判断在当前位置可以有几种操作; 2.根据当前位置允许的操作选择一个操作; 3.根据选择的操作进行奖赏; 4.修改当前行为的本次操作权重; 2.仿真效果预览 matlab2022a仿真测试如下: ...
1.算法仿真效果 matlab2022a仿真结果如下: 2.算法涉及理论知识概要 Q-Learning是强化学习中的一种重要算法,它属于无模型(model-free)学习方法,能够使智能体在未知环境中学习最优策略,无需环境的具体模型。将Q-Learning应用于路线规划和避障策略中,智能体(如机器人)能够在动态变化的环境中,自主地探索并找到从起点到...
Q-Learning的核心在于智能体对Q值函数的探索与学习。该函数将状态-动作对与未来累积奖励的预期值相联系。其更新过程遵循贝尔曼方程,旨在使当前状态-动作对的Q值尽可能接近即时奖励与下一状态最大Q值的折扣之和。通过在探索与利用间找到平衡,Q-Learning不断迭代更新Q值函数,逐步逼近最优策略。Q-Learning的精髓在于通过...
Qlearning强化学习倒立摆控制系统MATLAB仿真研究 1.算法描述 强化学习通常包括两个实体agent和environment。两个实体的交互如下,在environment的statestst下,agent采取actionatat进而得到rewardrtrt 并进入statest+1st+1。Q-learning的核心是Q-table。Q-table的行和列分别表示state和action的值,Q-table的值Q(s,a)Q(s,...