PyTorch 1.2.0 - CUDA 10.0, cuDNN 7.6 PyTorch 1.4.0 - CUDA 10.1, cuDNN 7.6 PyTorch 1.5.0 - CUDA 10.2, cuDNN 7.6 PyTorch 1.6.0 - CUDA 10.2, cuDNN 7.6 PyTorch 1.7.0 - CUDA 10.2, cuDNN 7.6 PyTorch 1.8.0 - CUDA 10.2, cuDNN 7.6 PyTorch 1.9.0 - CUDA 11.0, cuDNN 8.0 PyTorch ...
下载地址:https://developer.nvidia.com/rdp/cudnn-download 注册登录后下载对应cuda版本的cuDNN 如果是对应其他版本,选择 “ Archived cuDNN Releases ” 下载完成后解压 将文件夹下的内容复制到CUDA同名的文件夹下;不是替换!!! 注意:lib是win64下的内容 5、环境变量配置 搜索‘编辑环境变量’ 6、检验是否配置...
cuDNN(CUDA Deep Neural Network library)是NVIDIA为深度学习设计的高性能库,提供了对深度学习最常用的操作(如卷积、池化、激活函数等)的优化实现。 PyTorch、CUDA与cuDNN的版本对应关系 在使用PyTorch时,确保CUDA和cuDNN版本彼此兼容至关重要。PyTorch的官网提供了详细的版本兼容性矩阵。以下是一个示例表格,概述了常用...
如果直接用conda安装cudnn的时候也出现无法安装的情况下, 也可以使用下面的方法,参考:https://anaconda.org/nvidia/cud condainstallnvidia/label/cuda-11.3.0::cuda-nvcccondainstallnvidia/label/cuda-11.3.1::cuda-nvcccondainstallnvidia/label/cuda-11.4.0::cuda-nvcccondainstallnvidia/label/cuda-11.4.1::cuda...
三者关系 CUDA、cuDNN 和 PyTorch 是三个不同但相关的组件,它们之间存在一些依赖关系,特别是在使用 ...
GPU、NVIDIA Graphics Drivers、CUDA、CUDA Toolkit和cuDNN的关系 GPU:物理显卡。 NVIDIA Graphics Drivers:物理显卡驱动。 CUDA:一种由NVIDIA推出的通用并行计算架构,是一种并行计算平台和编程模型,该架构使GPU能够解决复杂的计算问题。在安装NVIDIA Graphics Drivers时,CUDA已经捆绑安装,无需另外安装。
该命令安装了指定版本的cudatoolkit,cudatoolkit是一个已编译好的 CUDA 库,它会在运行时被 PyTorch 使用,而不依赖于系统全局的 CUDA 安装。同时 torch 也会自动安装与指定版本的PyTorch兼容的cuDNN。 此链接为 pytorch 和 cudatoolkit 版本对应关系:pytorch各版本对照 ...
tensorflow和cuda、cudnn、python版本之间的匹配关系参考 pytorch和cuda、python版本对应关系 检查电脑环境 1.python版本 直接安装的python3.9,没有使用anaconda,没有创建虚拟环境。 2.cuda版本 我的电脑是11.2版本的cuda,面板信息显示如下: 3.系统版本 查看电脑的系统,我用的是win11系统,但是NVIDIA面板显示的是win10,所...
CUDA和cuDNN关系 CUDA看作是一个工作台,上面配有很多工具,如锤子、螺丝刀等。cuDNN是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。它就相当于工作的工具,比如它就是个扳手。但是CUDA这个工作台买来的时候,并没有送扳手。想要在CUDA上运行深度神经网络,就要安装cuDNN,就像你想要拧个螺帽就要...