series 也有 一个 sort_values() 函数,但在参数上稍有区别。 官方文档:pandas.Series.sort_values和pandas.DataFrame.sort_values 3、sort_values() 具体参数 格式如下: DataFrame.sort_values(by=‘进行排序的列名或索引值’, axis=0, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last...
df.sort_values(by='col1', na_position='first') # 依据第二、三列倒序 df.sort_values(by=['col2', 'col3'], ascending=False) # 替换原数据 df.sort_values(by='col1', inplace=True) 1. 2. 3. 4. 5. 6. 7. 8. 按行排序 # 按照索引值为0的行 即第一行的值来降序 x = pd.Dat...
# 依据第一列排序 并将该列空值放在首位df.sort_values(by='col1', na_position='first')# 依据第二、三列倒序df.sort_values(by=['col2','col3'], ascending=False)# 替换原数据df.sort_values(by='col1', inplace=True) 按行排序 # 按照索引值为0的行 即第一行的值来降序x = pd.DataFrame(...
# ignore_index=True:索引会进行重置 df.sort_values('brand', ignore_index=True)索引重新设置后结果...
python中sort_values用法python中sort_values用法 sort_values是pandas库中DataFrame和Series对象的方法,用于按照指定的列或索引对数据进行排序。 具体使用方法如下: 1.对DataFrame进行排序: df.sort_values(by='column_name', ascending=True/False) 其中,by参数指定要排序的列名,ascending参数指定升序或降序排列。 2....
data = df.sort_values(by="hello", ascending=False, ,axis=0) # axis=0表示按列,同理axis=1表示按行 4.2 多列/行排序 import pandas as pd df = pd.read_csv('test.csv') # 根据第一列降序排序,当第一列相同时,根据第三列进行升序排序。并且重置索引,替换原数据 data = df.sort_values(by =...
1DataFrame.sort_values(by=‘##',axis=0,ascending=True, inplace=False, na_position=‘last') 参数说明 by指定列名(axis=0或'index')或索引值(axis=1或'columns') axis若axis=0或'index',则按照指定列中数据大小排序;若axis=1或'columns',则按照指定索引中数据大小排序,默认axis=0 ...
DataFrame 的行索引在上图中以蓝色标出。索引不被视为一列,您通常只有一个行索引。行索引可以被认为是从零开始的行号。 在单列上对 DataFrame 进行排序 要根据单列中的值对 DataFrame 进行排序,您将使用.sort_values(). 默认情况下,这将返回一个按升序排序的新 DataFrame。它不会修改原始 DataFrame。
一、sort_values函数(python-pandas库) sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last') 参数说明: by:可以填入字符串或者字符串组成的列表。也就是说,如果axis=0,那么by="列名";如果axis=1,那么by="行名"。
df_sc=scores.sort_values(by='mike',ascending=True) df_sc 对第0行进行升序排序: scores.sort_values(by=0,axis=1,ascending=True) 最后,我们再尝试对第1行进行升序,第0行进行降序: scores.sort_values(by=[1,0],axis=1,ascending=[True,False] 可以看到,在输出的结果中,数据表的第0列并没有完全降...