接下来,我们会对DataFrame根据分数进行排序。这里我们使用sort_values方法,并且设置ascending=False来实现降序排序。 # 按照'分数'降序排序sorted_df=df.sort_values(by='分数',ascending=False)# 打印排序后的DataFrameprint("\n排序后的DataFrame:")print(sorted_df) 1. 2. 3. 4. 5. 6. 4. 重置索引 排序...
series 也有 一个 sort_values() 函数,但在参数上稍有区别。 官方文档:pandas.Series.sort_values和pandas.DataFrame.sort_values 3、sort_values() 具体参数 格式如下: DataFrame.sort_values(by=‘进行排序的列名或索引值’, axis=0, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last...
data = df.sort_values(by="hello", ascending=False, ,axis=0) # axis=0表示按列,同理axis=1表示按行 4.2 多列/行排序 import pandas as pd df = pd.read_csv('test.csv') # 根据第一列降序排序,当第一列相同时,根据第三列进行升序排序。并且重置索引,替换原数据 data = df.sort_values(by =...
# ignore_index=True:索引会进行重置 df.sort_values('brand', ignore_index=True)索引重新设置后结果...
1 总结sort_values函数的用法 python中默认按行索引号进行排序,如果要自定义数据框的排序,可以用sort_values函数进行重定义排序。 下面对sort_values中几个常用的参数进行讲解,它的具体语法如下: sort_values(by=[列表],ascending=[True or False], axis=(1 or 0)) ...
python中sort_values用法python中sort_values用法 sort_values是pandas库中DataFrame和Series对象的方法,用于按照指定的列或索引对数据进行排序。 具体使用方法如下: 1.对DataFrame进行排序: df.sort_values(by='column_name', ascending=True/False) 其中,by参数指定要排序的列名,ascending参数指定升序或降序排列。 2....
# 依据第一列排序 并将该列空值放在首位df.sort_values(by='col1', na_position='first')# 依据第二、三列倒序df.sort_values(by=['col2','col3'], ascending=False)# 替换原数据df.sort_values(by='col1', inplace=True) 按行排序 # 按照索引值为0的行 即第一行的值来降序x = pd.DataFrame...
1DataFrame.sort_values(by=‘##',axis=0,ascending=True, inplace=False, na_position=‘last') 参数说明 by指定列名(axis=0或'index')或索引值(axis=1或'columns') axis若axis=0或'index',则按照指定列中数据大小排序;若axis=1或'columns',则按照指定索引中数据大小排序,默认axis=0 ...
11.1 按索引排序 Series.sort_index()和DataFrame.sort_index()方法用于按其索引级别对pandas对象进行排序 In [300]: df =pd.DataFrame( ...: { ...: "one":pd.Series(np.random.randn(3), index=["a", "b", "c"]), ...: "two": pd.Series(np.random.randn(4), index=["a", "b", ...
Python Pandas - 对索引值进行排序并返回对索引进行排序的索引 要对索引值进行排序并返回对索引进行排序的索引,请使用 index.sort_values() 。参数 return_indexer 被设置为 True 。 首先,导入所需的库 − import pandas as pd 创建 Pandas 索引 − index = pd.