def print_pascal_triangle(num_rows): # 初始化杨辉三角形的第一行 triangle = [[1]] for i in range(1, num_rows): # 初始化当前行的第一个元素 prev_row = triangle[i - 1] curr_row = [1] # 根据上一行计算当前行的元素 for j in range(1, i): curr_row.append(prev_row[j - 1] ...
https://leetcode.com/problems/pascals-triangle-ii/ 题意分析: 给定一个整数k,返回第k层的Triangle。 题目思路: 根据Triangle规则,直接计算即可。 代码(python): View Code
代码:oj测试通过 Runtime: 46 ms 1classSolution:2#@return a list of lists of integers3defgenerate(self, numRows):4ifnumRows < 1:5return[]6pascal =[]7first_row = [1]8pascal.append(first_row)9foriinrange(1,numRows):10tmp =[]11tmp.append(1)12forjinrange(len(pascal[i-1])):13...
要用Python打印杨辉三角,可以按照以下步骤编写代码: def print_pascal_triangle(n): for i in range(n): coef = 1 for j in range(1, n - i + 1): print(" ", end="") for j in range(0, i + 1): if j > 0: coef = coef * (i - j + 1) // j print(" ", coef, end="")...
In Pascal’s triangle, each number is the sum of the two numbers directly above it. Example: Input: 3 Output: [1,3,3,1] 1. 2. Follow up: Could you optimize your algorithm to use only O(k) extra space? 题目大意 计算杨辉三角的第k行是多少。
题目链接: Pascal's Triangle II: https://leetcode.com/problems/pascals-triangle-ii/ 杨辉三角 II : https://leetcode.cn/problems/pascals-triangle-ii/ LeetCode 日更第166天,感谢阅读至此的你 欢迎点赞、收藏鼓励支持小满
3、在Python中难点应该就是每行的第一个元素和最后一个元素,最后一个元素通过判断j==i就可以区分了; 1classSolution:2#@return a list of lists of integers3defgenerate(self, numRows):4ret =[]5foriinrange(numRows):6ret.append([1])7forjinrange(1,i+1):8ifj==i:9ret[i].append(1)10el...
Merge two sorted Arrays without extra space Kadane’s Algorithm Merge Overlapping Subintervals Find the duplicate in an array of N+1 integers.Day2: (Arrays)Set Matrix Zeros Pascal Triangle Next Permutation Inversion of Array (Using Merge Sort) Stock Buy and Sell Ro tate Matrix Day3...
Given an index k, return the k-th row of the Pascal’s triangle. For example, given k = 3, Return [1,3,3,1]. Could you optimize your algorithm to use only O(k) extra space? C++ O(n^2) to Compute the Pascal Triangle It is easy to know that each number in the triangle ...
杨辉三角还是 Pascal Triangle 杨辉三角在英文版的LeetCode中被称为“Pascal Triangle”,这不免让人疑惑,这都是是谁的三角呢。 要不这样,谁生的早,就算谁的。 杨辉,生于1238年: Pascal(Blaise Pascal?),生于1623: OK,杨辉胜出 -- 那就叫杨辉三角。