读取value field的内容 可以使用PivotValueCell直接读取透视表“值”的内容 print(pt.PivotValueCell(1,1).Value) 这是读取第一个value单元格的内容,执行结果为: 1.0 筛选透视表 添加行标签筛选 pt_filter=pt.PivotFields("年龄").PivotFilters.Add2(Type=constants.xlCaptionIsLessThan,Value1="28") Valued=28...
现在我们要构建透视表,就需要提供划分依据,也就是说,此时pivot_table()需要拥有一个自己独属的index。 比如说,如果我们想按(Age) 来分组查看职工们的薪资等情况,就可以把 Age 设置为 index ,代码如下所示。 importpandasaspdimportnumpyasnpdf=pd.read_csv("Salaries.csv")print(pd.pivot_table(df,index=['Ag...
pivot_table函数是pandas库中的函数,调用首先需要加载pandas库。 其功能相当于excel中的数据透视表。 其基本调用语法如下: 代码语言:javascript 复制 importpandasaspd pd.pivot_table(data:'DataFrame',values=None,index=None,columns=None,aggfunc:'AggFuncType'='mean',fill_value=None,margins:'bool'=False,dropna...
pd.pivot_table(df,index=[u'对手',u'主客场']) 试着交换下它们的顺序,数据结果一样: pd.pivot_table(df,index=[u'主客场',u'对手']) 看完上面几个操作,Index就是层次字段,要通过透视表获取什么信息就按照相应的顺序设置字段,所以在进行pivot之前你也需要足够了解你的数据。 2.3 Values 通过上面的操作...
python数据分析——数据透视表与交叉表 一、数据透视表 pivot()的用途就是,将一个dataframe的记录w数据整合成表格(类似Excel中的数据透视表功能),pivot_table函数可以产生类似于excel数据透视表的结果,相当的直观。其中参数index指定“行”键,columns指定“列”键。
在python中实现数据透视表需要用到Pandas库中的pivot_table函数,该函数的参数详解如下。pd.pivot_table(...
pd.pivot_table来调用数据透视, index可以看做是pq中的分组依据字段 values可以看做是pq中的列字段 aggfunc分别是求和aggfunc=(np.sum),求平均aggfunc=(np.mean),计数aggfunc=(len),可以看做是excel透视表的值字段设置-计算类型 pivot_table模组的意义在于,大数据下的维度收缩,当数据源过于庞大时,通过py处理csv合...
Python数据透视功能之 pivot_table()介绍 pivot_table pivot()函数没有数据聚合功能,要想实现此功能,需要调用Pandas包中的第三个顶层函数:pivot_table(),在pandas中的工程位置如下所示: pandas | pivot_table() 如下,构造一个df实例: 调用如下操作: 参数index指明A和B为行索引,columns指明C列取值为列,聚合函数...
创建透视表的pivot_table()函数里面的参数设置很多,学习它最有效的方式是每一步设置一个参数,检查结果是否符合预期。 先从最简单的语法开始,只设置index='Account',通用语法如下: pd.pivot_table(df, index=label_str) 代码语言:javascript 复制 pd.pivot_table(df,index="Account") ...
在pivot_table函数当中最重要的四个参数分别是index、values、columns以及aggfunc,其中每个数据透视表都必须要有一个index,例如我们想看每个地区咖啡的销售数据,就将“region”设置为index df.pivot_table(index='region') 1. output 当然我们还可以更加细致一点,查看每个地区中不同咖啡种类的销售数据,因此在索引中我们...