>>> a=np.arange(6).reshape(2,3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> a*a array([[ 0, 1, 4], [ 9, 16, 25]]) >>> a+a array([[ 0, 2, 4], [ 6, 8, 10]]) >>> a-a array([[0, 0, 0], [0, 0, 0]]) >>> a/a array([[ nan, 1., 1...
接下来,我们需要创建一个ndarray对象,这是我们要进行转换的原始数据。ndarray是numpy库中的一个多维数组对象,具有强大的数值计算能力。我们可以使用以下代码创建一个ndarray对象: ndarray_obj=np.array([1,2,3,4,5]) 1. 这样,我们就完成了准备工作,接下来就可以开始进行转换了。 3.转换为array 转换的过程可以分...
import numpy as np from array import array # 创建一个ndarray对象 ndarray_obj = np.array([1, 2, 3, 4, 5]) #将ndarray转换为list list_obj = ndarray_obj.tolist() #将list转换为array对象 array_obj = array('i', list_obj) # 'i'表示整型数组 # 打印转换后的array对象 print(array_obj)...
numpy().tolist() # torch.Tensor 转 list 先转numpy,后转list ndarray = tensor.cpu().numpy() # torch.Tensor 转 numpy *gpu上的tensor不能直接转为numpy tensor = torch.from_numpy(ndarray) # numpy 转 torch.Tensor 文章转载于: python3 list, np.array, torch.tensor相互转换...
单个变量的转化 ndarray = np.array(list)# list 转 numpy数组list= ndarray.tolist()# numpy 转 listtensor=torch.tensor(list)# list 转 torch.Tensorlist= tensor.numpy().tolist()# torch.Tensor 转 list 先转numpy,后转listndarray = tensor.cpu().numpy()# torch.Tensor 转 numpy *gpu上的tensor...
repeat(times): 重複陣列的值(類似擴張) ndarray.sort(): 把陣列當中的元素排序 ndarray.sum(): 加總多維陣列(可指定加總的維度根據) 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # 实用模块 np.squeeze(array) # 去掉array的第一列 np.maximin(x,0,y) # 比较两个值大小,若有小于0的,则为0...
要将ndarray转换为数组,可以使用NumPy的tolist()函数。该函数将ndarray对象转换为Python列表对象,从而实现了ndarray到数组的转换。 以下是一个示例代码: 代码语言:txt 复制 import numpy as np # 创建一个ndarray对象 ndarr = np.array([1, 2, 3, 4, 5]) # 将ndarray转换为数组 arr = ndarr.tolist() ...
创建数组的最简单的⽅法就是使⽤array函数,将Python下的list转换为ndarray。 一维数组 import numpy as np l = [1,3,5,7,9] # 列表 arr = np.array(l) # 将列表转换为NumPy数组 arr # 数据⼀样,NumPy数组的⽅法,功能更加强⼤ # 输出为 ...
三、ndarray: 多维数组,由实际数据和描述这些数据的元数据(数据维度、数据类型)两部分构成。 一般要求所有元素类型相同,数组下标从0开始。 np.array()可以生成一个ndarray数组,输出成[]形式,元素由空格分割。 两个属性: 轴(axis):保存数据维度;秩(rank):轴的数量 ...