Mini Batch K-Means算法是K-Means算法的变种,采用小批量的数据子集减小计算时间,同时仍试图优化目标函数,这里所谓的小批量是指每次训练算法时所随机抽取的数据子集,采用这些随机产生的子集进行训练算法,大大减小了计算时间,与其他算法相比,减少了k-均值的收敛时间,小批量k-均值产生的结果,一般只略差于标准算法。 该算...
1.1 K-均值算法(K-means)算法概述 K-means算法是一种无监督学习方法,是最普及的聚类算法,算法使用一个没有标签的数据集,然后将数据聚类成不同的组。 K-means算法具有一个迭代过程,在这个过程中,数据集被分组成若干个预定义的不重叠的聚类或子组,使簇的内部点尽可能相似,同时试图保持簇在不同的空间,它将数据...
此外,为了提高收敛速度,还可以考虑采用二分K-Means法,将所有点作为一个簇,将该簇一分为二,然后选择能最大程度降低聚类代价函数的簇划分为两个簇,以此进行下去,直到簇的数目等于给定的个数K为止。值得一提的是,该法更突出的优点在于能够很好地解决K-Means收敛到局部最优的问题,帮助我们找到全局最优解。 局部最...
先采用层次进行初步聚类输出k个簇,以簇的中心点的作为k-means的中心点的输入。 多次随机选择中心点训练k-means,选择效果最好的聚类结果 (2)k值的选取 k-means的误差函数有一个很大缺陷,就是随着簇的个数增加,误差函数趋近于0,最极端的情况是每个记录各为一个单独的簇,此时数据记录的误差为0,但是这样聚类结果并...
K-means的损失函数为数据点与数据点所在的聚类中心之间的距离的平方和,也就是: 其中μ为数据点所在的类别的聚类中心,我们期望最小化损失,从而找到最佳的聚类中心和数据所属的类别。 2.1 陷入局部最小值问题及改进 然而,上面说到,在K-means算法的第一步是随机选取k个位置作为聚类中心,这可能就会导致,不同的初始...
k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法(k-means)根据某个距离函数反复把数据分入k个聚类中。k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它...
K-Means算法是典型的基于距离的非层次聚类算法,在最小化误差函数的基础上将数据划分为预定的类数k,采用距离作为相似性评价指标,即认为两个对象的距离越近,其相似度就越大。 1.算法过程 (1)从n个样本数据中随机选取k个对象作为初始聚类中心; (2)分别计算每个样本到各个聚类中心的距离,将对象分配到距离最近的聚类...
在Python中,scikit-learn库提供了一个K-means函数,可以方便地实现数据的聚类分析。本文将一步一步回答关于Python中K-means函数的使用和实现。 第一步:导入必要的库和数据集 首先,我们需要导入scikit-learn库中的K-means函数以及其他必要的库(如numpy和matplotlib)。为了演示K-means函数的使用,我们将使用sklearn库...
在上述代码中,我们首先使用 scikit-learn 的 make_blobs 函数生成了一个随机的二维数据集。然后,我们构建了一个 K-means 聚类模型,并拟合了数据集。最后,我们使用散点图将数据集的样本点按照所属的簇进行了可视化,并标记了簇的中心点。 总结 K-means 算法是一种简单而有效的聚类算法,在许多实际问题中都有着广泛...
在上述代码中,我们首先使用 scikit-learn 的 make_blobs 函数生成了一个随机的二维数据集。然后,我们构建了一个 K-means 聚类模型,并拟合了数据集。最后,我们使用散点图将数据集的样本点按照所属的簇进行了可视化,并标记了簇的中心点。 总结 K-means 算法是一种简单而有效的聚类算法,在许多实际问题中都有着广泛...