plt.plot(K,meanDispersions,'bx-') plt.xlabel('k') plt.ylabel('平均离差') plt.title('用肘部方法选择K值') plt.show() 三、实例分析(对某网站500家饭店价格及评论进行聚类) import numpy as np fromsklearn.cluster import KMeans from scipy.spatial.distance import cdist importmatplotlib.pyplot as ...
9):kmeans=KMeans(n_clusters=i).fit(data)cluster_labels=kmeans.predict(data)silhouette_score_avg=silhouette_score(ddata_minmax,cluster_labels)#轮廓系数sse=kmeans.inertia_#簇内平方和silhouette_list.
k-means算法是将样本聚类成 k个簇(cluster),其中k是用户给定的,其求解过程非常直观简单,具体算法描述如下: 1) 随机选取 k个聚类质心点 2) 重复下面过程直到收敛 { 对于每一个样例 i,计算其应该属于的类: 对于每一个类 j,重新计算该类的质心: } 其伪代码如下: *** 创建k个点作为初始的质心点(随机选择)...
构建K-Means算法的代码如下: def kmeans(data, k, cent): ''' kmeans算法求解聚类中心 :param data: 训练数据 :param k: 聚类中心的个数 :param cent: 随机初始化的聚类中心 :return: 返回训练完成的聚类中心和每个样本所属的类别 ''' m, n = np.shape(data) # m:样本的个数;n:特征的维度 subCe...
原理+代码|Python实现 kmeans 聚类分析 来源:早起Python 作者:萝卜 1.前言 聚类分析是研究分类问题的分析方法,是洞察用户偏好和做用户画像的利器之一,也可作为其他数据分析任务的前置探索(如EDA)。上文的层次聚类算法在数据挖掘中其实并不常用,因为只是适用于小数据。所以我们引出了 K-Means 聚类法,这种方法...
二、实验代码 因为是刚开始学习,所以还是引用了第一篇博文的代码,但根据自身情况进行了详细的注释。 1. from sklearn.cluster import KMeans #从sklearn.cluster包中导入KMeans模块 import numpy as np #导入numpy模块,后续只能通过np来引用 # 构造数据样本点集X,并计算K-means聚类 ...
代码语言:javascript 复制 importnumpyasnp from sklearn.clusterimportKMeans data=np.random.rand(100,3)#生成一个随机数据,样本大小为100,特征数为3#假如我要构造一个聚类数为3的聚类器 estimator=KMeans(n_clusters=3)#构造聚类器 estimator.fit(data)#聚类 ...
以下是我的代码,包含注释、空行总共26行,有效代码16行。1import numpy as np 2 3defkmeans_xufive(ds, k): 4"""k-means聚类算法 5 6 k - 指定分簇数量 7 ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值 8 """ 910 m, n = ds.shape # m:样本数量,n:每...
1、使用 K-means 模型进行聚类,尝试使用不同的类别个数 K,并分析聚类结果。 2、按照 8:2 的比例随机将数据划分为训练集和测试集,至少尝试 3 个不同的 K 值,并画出不同 K 下 的聚类结果,及不同模型在训练集和测试集上的损失。对结果进行讨论,发现能解释数据的最好的 K 值。