def CNN_model(self,train_images, train_lables): # ===构建卷积神经网络并保存=== model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1))) # 过滤器个数,卷积核尺寸,激活函数,输入形状 model.add(layers.MaxPooling2D((2, 2))) #...
def CNN_model(self,train_images, train_lables): # ===构建卷积神经网络并保存=== model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)))# 过滤器个数,卷积核尺寸,激活函数,输入形状 model.add(layers.MaxPooling2D((2, 2)))# ...
模型包括3个卷积层、2个池化层、4个激活函数层、2个Dropout层、2个全连接层、1个Flatten层和最终分类层。 图片初始化是100*100大小,卷积层卷积核的个数都是32个,大小是13*13,经过三层卷积和两层池化,每张图片处理为4*4大小,经Flatten层压扁成一维进入全连接层,第一个全连接层指定了128个神经元,进入Dropout层...
通过TensorFlow搭建MobileNetV2轻量级卷积神经算法网络模型,通过对猫狗的图片数据集进行训练,得到一个进度较高的H5格式的模型文件。然后使用Django框架搭建了一个Web网页端可视化操作界面。实现用户上传一张图片识别其名称。 一、前言 本研究中,我们开发了一个基于深度学习的猫狗识别系统,使用了TensorFlow框架下的MobileNetV2...
运用Python 3.8.1版本,爬取网络数据,基于卷积神经网络(CNN)的图像处理原理,搭建口罩识别技术训练集,构建人脸识别系统,最终建立高校师生行踪查询管理系统。 数据来源及环境准备 通过网络搜集,得到3073张不同性别、年龄以及不同场景中的人佩戴口罩的照片,而未佩戴口罩的人脸图片从中选取了3249张图片。以此...
本研究的目标是使用卷积神经网络(CNN)对动物图像进行分类。通过对大量的猫、狗和野生动物图像进行训练,建立一个准确分类不同动物类别的模型。该模型可以用于自动识别和分类新的动物图像,从而提供快速、准确的动物分类结果。 二、研究内容和步骤: 1、本次训练的数据来源于https://www.kaggle.com/datasets/andrewmvd/...
一、介绍 昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集(‘蜜蜂’, ‘甲虫’, ‘蝴蝶’, ‘蝉’, ‘蜻蜓’...
知乎学术咨询:https://www.zhihu.com/consult/people/792359672131756032?isMe=1 担任《Mechanical System and Signal Processing》等审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
基于CNN的人脸识别(上) 代码下载 一、 CNN概述 1.1 CNN发展历程 1.2 CNN基本结构 二、 CNN算法原理 2.1 CNN基本网络结构 2.1.1输入层 2.1.2卷积层 2.1.3池化层 2.1.4全连接层 2.1.5 激励层 具体代码实现可参看 Keras深度学习应用1——基于卷积神经网络(CNN)的人脸识别(下) ...
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传...