【示例1】使用array函数创建数组 代码语言:javascript 代码运行次数:0 运行 AI代码解释 importnumpyasnp a=np.array([1,2,3])# 创建一维数组 b=np.array([[1,2,3],[4,5,6],[7,8,9]])# 创建二维数组 c=np.array([[[1,2,3],[4,5,6],[7,8,9]]])# 创建三维数组print(a)print(b)print...
而同一个二维数组中会有一些str类型, 我又不会让array二维数组的其中一列变成int类型,怎么办呢。 通过np.delete将不需要分组的数据删除,数据如下 Original=np.array([[2,"张三"], [1,"李四"], [3,"王五"]]) temp = np.delete(Original.T,1,axis=0).T print(temp) 接下来我用一个 temp 临时数组...
2. 使用NumPy:np.array()优点:NumPy是科学计算的标准库,提供了优化的数组操作和广泛的数学函数库。支持向量化操作,性能远超纯Python实现。缺点:需要安装外部库。对于非数值计算任务,NumPy的功能可能有些过剩。3. 使用NumPy:np.arange()优点:可以快速生成一个数值范围内的数组,用法类似于Python的range(),但...
import numpy as np #使用array函数创建一维数组 a=np.array[1,2,3,4] print(a) #使用array函数创建二维数组 b=np.array([[1,2,3],[4,5,6],[7,8,9]]) print(b) #使用array函数创建三维数组 c=np.array([[[1,2,3],[4,5,6],[7,8,9]]]) print(c) #array函数中dtype使用,指定元素...
1.通过numpy的array(参数),参数可以是列表、元组、数组、生成器等 由arr2和arr3看出,对于多维数组来说,如果最里层的数据类型不一致,array()会将其转化为一致 由arr2和arr4看出,对于最里层的数据个数不一致,array()的结果只是一个一维数组。 import numpy as np ...
array([ [("Go", 2, 8.5)], [("Java", 3, 8.0)], [("Python", 1, 9.0)], ], dtype=dt) print(arr) """ [[('Go', 2, 8.5)] [('Java', 3, 8. )] [('Python', 1, 9. )]] """ @注:字符串式声明比较简单,只要使用逗号隔开即可,如上述示例:i1,i4,f 2.2 元组列表式声明 ...
, 1.]) >>> np.ones((5,), dtype=np.int) array([1, 1, 1, 1, 1]) >>> np.ones((2, 1)) array([[ 1.], [ 1.]]) >>> s = (2,2) >>> np.ones(s) array([[ 1., 1.], [ 1., 1.]])6、ones_like() 依据给定数组(a)的形状和类型返回一个新的元素全部为1的数组...
importnumpyasnpX=np.array([[0,1,2,3],[10,11,12,13],[20,21,22,23],[30,31,32,33]])#X是一个二维数组,维度为0,1;第0层[]表示第0维;第1层[]表示第1维; 2.1 取元素X[n0,n1] 表示取第0维的第n0个元素,继续取第1维的第n1个元素。
NUMPY是PYTHON最常用,最基本的模块。 创建: np.array([1,2,3])列表创建:arr1=np.array([[1,2,3],[4,5,6]])创建:np.array((1,2))创建:np.array(((1,2,3),(4,5,6)))创建:numpy.array((arr1,arr2))参数:指定元…