先采用层次进行初步聚类输出k个簇,以簇的中心点的作为k-means的中心点的输入。 多次随机选择中心点训练k-means,选择效果最好的聚类结果 (2)k值的选取 k-means的误差函数有一个很大缺陷,就是随着簇的个数增加,误差函数趋近于0,最极端的情况是每个记录各为一个单独的簇,此时数据记录的误差为0,但是这样聚类结果并...
# n_clusters=3,表示k=3,也就是随机三个聚类中心,最小值是2 # init,聚类中心初始化方法,默认k-means++ # max_iter,最大迭代次数,默认300,如果后期无法收敛可以尝试增加迭代次数 # random_state=1,随机种子,默认是None # 拟合 km.fit( 训练集特征 ) # 查看聚类中心 print('聚类中心:', km.cluster_cen...
51CTO博客已为您找到关于python中的kmeans聚类函数的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及python中的kmeans聚类函数问答内容。更多python中的kmeans聚类函数相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。