PVDF锂电池粘结剂的粘结机理:通过长链上的F原子和极片中的其他组分颗粒形成氢键,氢键的作用使得各个组分颗粒串在一起。PVDF具有诸多的优点:它具有较宽的电化学稳定窗口,在0-5V(Li/Li+)时电化学性能稳定;同时PVDF具有较好的抗氧化能力和化学反应惰性不易变质;此外PVDF具有很好溶胀性能,采用PVDF作为粘结剂的...
在图3(b)中,HFP-GN GPE的活化能为0.074 eV,略低于Celgard和PVDF-HFP GPE。说明锂离子在HFP-GN GPE中的传输需要很少的能量和势垒。此外,在图3(c)中,HFP-GN GPE的较宽的电化学稳定窗口,表明HFP-GN GPE具有良好的电化学稳定性和抗...
在图3(b)中,HFP-GN GPE的活化能为0.074 eV,略低于Celgard和PVDF-HFP GPE。说明锂离子在HFP-GN GPE中的传输需要很少的能量和势垒。此外,在图3(c)中,HFP-GN GPE的较宽的电化学稳定窗口,表明HFP-GN GPE具有良好的电化学稳定性和抗氧化性。更重要的是,如所示,HFP-GN GPE的t+为0.54,高于无有效锂离子输运...
以N,N-二甲基甲酰胺为溶剂,水为非溶剂经相转移制备聚偏氟乙烯-六氟丙烯聚合物电解质,用扫描电子显微镜、交流阻抗和线性扫描对所制聚合物膜进行表征.实验结果表明:相转移法制得的微孔膜孔隙丰富,吸液率可达480%,电化学稳定窗口为5.5 V,浸取电解液后室温离子电导率为4.7 mS?cm-1;以LiCoO2为正极制得的聚合物电...
通过 碳酸丙烯酯(PC) 的增塑,降低了体系结晶度,获得了适用于室温高压锂电体系的PVDF-HFP/PC 基固态电解质膜,其 -3 + 室温离子电导率达到2.3 10 S/cm ,电化学稳定窗口达到4.8 V (vs. Li/Li ) ,相对于目前研究最为广泛的聚氧化乙烯 (PEO)基固态电解质,其拥有显著优势。将其与高压阴极LiNi0.6Co0.2Mn0.2...
本工作设计了一种新的二维氟化石墨烯增强PVDF-HFP固体聚合物电解质,用于室温锂金属电池。添加氟化石墨烯引起的晶粒细化效应不仅可以改善机械性能,还可以增强界面锂离子传输,从而提高聚合物电解质的锂离子电导率。此外,氟化石墨烯参与构建稳定的界面...
以聚偏氟乙烯–六氟丙烯(polyvinylidene fluoride-hexafluoropropylene,PVDF-HFP)为聚合物基体,引入MOF-808作为活性填料,采用溶液浇筑法制备了新型凝胶聚合物电解质。优化后的凝胶聚合物电解质在室温下的离子电导率高达3.21 mS/cm,电化学稳定窗口可达5.0 V、具有较高的Li^(+)迁移数(0.63)、与锂金属具有良好的界面...
(i)基于PVDF-HFP的“盐包聚合物”固态电解质,包含用于保持电解质机械性能的结晶PVDF和用于溶解大量锂盐的大量F基团,在室温下显示出高离子电导率(1.24×10-4S cm-1)。此外,由于“盐包聚合物”固态电解质的宽电化学稳定窗口(4.7 V vs. Li+/Li),能够使LiNi0.5Co0.2Mn0.3O2(NCM523)正极实现高压工作; ...
这项工作提出了一种简单的相分离方法来构建多孔PVDF-HFP载体,以帮助基于双盐SN的PCE实现高电化学性能,显示了开发高性能固态LMB的潜力。更重要的是,SN作为一种在相分离过程中调节聚合物结构的高沸点非溶剂被证明是获得具有可调节结构的多孔聚合物膜的一种有前途的方法,这将有望扩展到锂电池中需要多孔支撑载体的其他...
用扫描电子显微镜和X射线衍射等对所制电解质性能进行表征,用交流阻抗和充放电实验研究聚合物电池的电化学性质。结果表明:直接挥发溶剂法制得的复合聚合物膜呈蜂窝状,孔穴丰富,强度增加,浸取电解液后室温离子电导率为1.51 mS/cm,电化学稳定窗口为5.5 V;以LiCoO2为正极制得的聚合物电池0.1C充放电,50次循环后容量...