1.3 PSO-LSTM负荷预测模型 本文将 PSO 与 LSTM 神经网络结合的方法是把LSTM的三个关键超参数(神经元数量L1,学习率 ε和训练迭代次数k)作为PSO粒子的寻优变量,通过更新粒子的速度和位置,从而使负荷预测的适应度值达到最低,获得更优的模型参数。PSO 优化LSTM模型参数的流程图如图2所示。 2 运行结果 2.1 LSTM 2.2 ...
PSO粒子群优化LSTM(PSO-LSTM)是一种将粒子群优化算法(PSO)与长短期记忆神经网络(LSTM)相结合的混合模型。该算法通过模拟鸟群觅食行为,在解空间中搜索和迭代,以找到全局最优解。 在PSO-LSTM中,每个粒子代表一个LSTM模型的参数组合。粒子的位置表示参数的取值,速度表示参数的更新方向和幅度。粒子群根据个体最优和全局...
通过观察混淆矩阵,我们可以发现模型在哪些类别上容易出现混淆,从而进一步改进模型🧐。 Confusion Matrix: PSO 与神经网络结合 在这部分内容中,我们将粒子群优化算法(PSO)与神经网络相结合,以进一步优化模型的性能😎。首先,我们定义了模型设计函数,该函数根据输入的参数(包含单元数和学习率)来构建神经网络模型🧠。 ...
在后对比实验中,我们将PSO-LSTM模型与其他时间序列预测方法进行了比较,如ARIMA和SARIMA。实验结果表明,PSO-LSTM模型在预测准确性方面也表现出色。 综上所述,我们提出了一种基于粒子群算法优化的长短时记忆(PSO-LSTM)模型,用于时间序列数据预测。实验结果表明,PSO-LSTM模型具有更好的预测准确性和性能。它能够更好地捕...
1.3 PSO-LSTM负荷预测模型 本文将 PSO 与 LSTM 神经网络结合的方法是把LSTM的三个关键超参数(神经元数量L1,学习率 ε和训练迭代次数k)作为PSO粒子的寻优变量,通过更新粒子的速度和位置,从而使负荷预测的适应度值达到最低,获得更优的模型参数。PSO 优化LSTM模型参数的流程图如图2所示。
ARIMA-PSO-LSTM模型的基本原理是:首先,使用ARIMA模型对时间序列数据进行拟合,并通过PSO算法优化ARIMA模型中的参数。然后,将优化后的ARIMA模型作为LSTM的输入,并使用训练数据对LSTM进行训练。最后,使用训练好的模型对未来的时间序列数据进行预测。 ARIMA-PSO-LSTM模型的优点在于可以充分发挥ARIMA模型和LSTM模型的优势,通过优...
LSTM(长短时记忆模型)与粒子群算法优化后的LSTM(PSOLSTM)以及量子粒子群算法优化后的LSTM(QPSOLSTM)对比实验,可用于风电、光伏等负荷预测,数据为多输入单输出预测,最后一列输出,PSO、QPSO优化超参数为隐含层1节点数、隐含层2节点数、最大迭代次数和学习率。
首先需要定义一个LSTM模型,以便后续的参数优化。我们将定义LSTM的输入维度、隐藏层单元数和学习率。 importnumpyasnpimporttensorflowastffromtensorflow.keras.modelsimportSequentialfromtensorflow.keras.layersimportLSTM,Densedefcreate_LSTM_model(input_shape,units,learning_rate):model=Sequential()model.add(LSTM(units...
【基于PSO-LSTM、LSTM(粒子群优化长短期记忆神经网络)时间序列预测对比模型】基于PSO-LSTM、LSTM(粒子群优化长短期记忆神经网络)时间序列预测模型,预测效果如上, PSO-LSTM、LSTM时序预测源码地址:https://mbd.pub/o/bread/mbd-ZJ2XmZZv PSO-BiLSTM、BiLSTM时序预测源码地址:https://mbd.pub/o/bread/mbd-ZJ2Ykp...
粒子群算法(Particle Swarm Optimization, PSO)是一种启发式优化算法,可以用于优化神经网络模型的参数。