五、MATLAB仿真结果 (1)根据经验公式,通过输入输出节点数量,求得最佳隐含层节点数量: (2)PSO-BP和BP的预测对比图和误差图 (3)BP和PSO-BP的各项误差指标,预测准确率 (4)粒子群算法PSO适应度进化曲线 (5)BP和PSO-BP模型的回归图 (6)BP和PSO-BP模型的误差直方图 源代码获取:点击跳转(链接安全)www.kdocs...
(PSO-BP)粒子群优化bp神经网络Matlab分类算法 以下是一个用 MATLAB 实现的基本粒子群优化(PSO)和 BP 神经网络的分类器。这个例子是假设有四个输入变量,两个输出变量,训练数据包含 m 个样本,每个样本包含四个输入变量和两个输出变量。备注都有详细说明。 ``` % --- % 初始化参数 % --- % 设定神经网络的...
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现) 欢迎来到本博客 ️ ️ 博主优势: 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 /> ⛳️座右铭:行百里者,半于九十。 1 概述参考文献: 基于CNN-SVM的数据分类预测研究是一… 依然 推荐系统遇上深度学习(...
PSO-BP粒子群算法优化神经网络回归预测模型matlab代码1、可直接替换数据集即可、有对比图2、误差分析包含MSE RMSE R方 MAE MBE MAPE(附带优化前后误差分析值代码)3、多种出图 有对比图含注释, 视频播放量 170、弹幕量 0、点赞数 4、投硬币枚数 0、收藏人数 6、转发人数 1,
(PSO-BP)结合粒子群的神经网络算法以及matlab实现 原理: PSO(粒子群群算法):可以在全局范围内进行大致搜索,得到一个初始解,以便BP接力 BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。 数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x','x')[-5,5]进行采样,得到30组...
1.Matlab实现PSO-BP-Adaboost基于粒子群算法优化BP神经网络结合Adaboost思想的分类预测模型(完整源码和数据)基于Adaboost思想集成多个BP弱学习器进行组合,并利用粒子群优化算法对BP的初始权重与阈值进行自动寻优,避免人工调参。算法新颖. 2.数据为多特征分类数据,输入12个特征,分四类; ...
BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。 数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x','x')[-5,5]进行采样,得到30组训练数据,拟合该网络。 神经网络结构设置:该网络结构为,1-7-1结构,即输入1个神经元,中间神经元7个,输出1个神经元 ...
PSO优化的BP神经网络(Matlab版) 前言:最近接触到一些神经网络的东西,看到很多人使用PSO(粒子群优化算法)优化BP神经网络中的权值和偏置,经过一段时间的研究,写了一些代码,能够跑通,嫌弃速度慢的可以改一下训练次数或者适应度函数。 在我的理解里,PSO优化BP的初始权值w和偏置b,有点像数据迁徙,等于用粒子去尝试作为...
简介:【BP回归预测】基于粒子群算法PSO优化BP神经网络实现预测多输入多输出附matlab代码 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 ...