MATLAB实现PSO-SVM粒子群算法优化支持向量机多特征分类预测,PSO选择最佳的SVM参数c和g。SVM模型有两个非常重要的参数C与gamma。其中 C是惩罚系数,即对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。C过大或过小,泛化能力变差 。gamma是选择RBF函数作为kernel后,该函数自带的一个参数。
SVM 是一种二分类模型,其基本思想是找到一个最优的超平面,使得不同类别的样本能够被最大化地分开。PSO-SVM 模型是在传统的 SVM 模型基础上引入了粒子群优化算法,通过不断迭代优化 SVM 的参数,以提高分类的准确性。而 QPSO-SVM 模型则是在 PSO-SVM 模型的基础上,采用了量子粒子群优化算法,进一步提高了模型的性...
1.算法仿真效果 matlab2022a仿真结果如下: 2.算法涉及理论知识概要 支持向量机(support vector machines, SVM)是二分类算法,所谓二分类即把具有多个特性(属性)的数据分为两类,目前主流机器学习算法中,神经网络等其他机器学习模型已经能很好完成二分类、多分类,学习和研究SVM,理解SVM背后丰富算法知识,对以后研究其他算...
数据预处理就是在利用历史负荷数据之前,先对其进行加工,去除不规则数据和填补缺失数据,消除不良数据或坏数据的影响,以保证负荷预测的准确性。 支持向量机(support vector machines, SVM)是二分类算法,所谓二分类即把具有多个特性(属性)的数据分为两类,目前主流机器学习算法中,神经网络等其他机器学习模型已经能很好完成...
数据预处理就是在利用历史负荷数据之前,先对其进行加工,去除不规则数据和填补缺失数据,消除不良数据或坏数据的影响,以保证负荷预测的准确性。 支持向量机(support vector machines, SVM)是二分类算法,所谓二分类即把具有多个特性(属性)的数据分为两类,目前主流机器学习算法中,神经网络等其他机器学习模型已经能很好完成...
基于PSO-NN、SVM、KNN、DT的多特征数据分类预测,二分类及多分类(Matlab完整程序和数据) 此代码获取用于分类的数据输入。 数据由 6 个 300 个样本组成,包含 40 个特征的类。 你可以提取你的特征和将其标记为监督模型。 PSO-NN-粒子群优化神经网络
在本文中,我们采用DBCAN算法提取风功率异常数据,并使用KMEANS算法进行聚类。接着,我们采用PSO-SVM对风功率进行分类预测,并在Matlab平台上进行了仿真实验。下图展示了风功率数据异常值剔除和分类结果,其中红色代表异常值,蓝色代表正常值。同时展示了经过PSO优化的SVM与未优化的SVM的对比预测结果。从图中可以看出,...
在PSO-SVM中,PSO用于优化SVM的参数,如C(惩罚系数)、γ(核函数中的参数)。具体步骤如下: 初始化PSO种群; 每个粒子代表一组SVM参数; 使用交叉验证的方法评估每组参数下的SVM分类性能; 根据分类性能更新粒子的位置和速度; 迭代直至满足终止条件。 PSO-SVM不仅能够有效解决SVM中参数选择的问题,还能够获得比传统SVM和...
简介:基于PSO粒子群优化的SVM(PSO-SVM)的短期电力负荷预测matlab仿真 1.算法描述 电力系统是由电力网和电力用户组成,其任务是给广大用户不间断地提供优质电能,满足各类负荷的需求。由于电能的生产、输送、分配和消费是同时完成的,难以大量储存,这就要求系统发电出力随时紧跟系统负荷的变化以达到动态平衡,否则就会影响供...
还不用改代码,替换数据集就可以运行了,非常适合科研小白啊! 基于粒子群优化支持向量机(PSO-SVM)的数据回归预测 PSO-SVM回归and分类 matlab代码,推荐 2018B 版本及以上(有混淆矩阵存在),仅支持 Windows 64位…