一、predict 和 predict_proba的概念和区别 1、predict和predict_proba都是用于模型的预测。 2、predict返回的是一个预测的值,predict_proba返回的是对于预测为各个类别的概率。 3、predict_p... 查看原文 Python每日一记23>>>分类模型的可信度评估 。 大部分算法...
输入的[-1, -1]刚好是训练分类器时使用的数据,训练数据中[-1, -1]属于类别6,在predict_proba输出概率中,最大概率值出现在第三个位置上,第三个位置对应的classes_类别刚好也是类别6。这也就是说,predict_proba输出概率最大值索引位置对应的classes_元素就是样本所属的类别。下面就来看一下predict的预测结果与...
predict_proba返回的是一个n行k列的数组,n表示测试集中样本的个数,地i行j列数值是模型预测第i个预测样本某个标签的概率,每行之和为1.相对更精准。比如在画ROC图使用。 2.举例说明 xgb.XGBClassifier(max_depth=6,n_estimators=100).fit(X_train,y_train).predict(X_test) xgb.XGBClassifier(max_depth=6,...
predict返回的是一个大小为n的一维数组,一维数组中的第i个值为模型预测第i个预测样本的标签; predict_proba返回的是一个n行k列的数组,第i行第j列上的数值是模型预测第i个预测样本的标签为j的概率。此时每一行的和应该等于1。
predict_proba返回的是一个n行k列的数组,第i行第j列上的数值是模型预测第i个预测样本的标签为j的概率。此 时每一行的和应该等于1。 举个例子: >>> from sklearn.linear_model import LogisticRegression >>> import numpy as np >>> x_train = np.array([ ...
经过胡乱分析发现predict_proba得到的维度比总类别数少了几个,经过测试发现就是这个造成的,即训练集中有部分类别样本数为0。这个问题比较隐蔽,记录一下方便天涯沦落人绕坑。 Tip:在sklearn的train_test_split中有一个参数可以强制测试集和训练集的数据分布一致,也就不会导致缺类别的问题。
浅谈sklearn中predict与predict_proba区别 predict_proba 返回的是⼀个 n ⾏ k 列的数组,列是标签(有排序),第 i ⾏第 j 列上的数值是模型预测第 i 个预测样本为某个标签的概率,并且每⼀⾏的概率和为1。predict 直接返回的是预测的标签。具体见下⾯⽰例:# conding :utf-8 from sklearn....
model.predict_proba返回的是[num_cases, n_classes]的二维矩阵,每行表示了每个case在每个类别的预测概率(float) model.predict_proba输出每个case在每类上的预测概率 model.predict返回的是[num_cases,]的一维array,直接输出了每个case的标签(int or str均可) model.predict直接输出每个case的标签编辑...
predict_proba:返回一个 n 行 k 列的数组, 第 i 行第 j 列上的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1。 >>>fromsklearn.linear_modelimportLogisticRegression>>>importnumpyasnp>>>x_train=np.array([[1,2,3],[1,3,4],[2,1,2],[4,5,6],[3,5,3],[1...
我的理解:predict_proba不同于predict,它返回的预测值为,获得所有结果的概率。(有多少个分类结果,每行就有多少个概率,以至于它对每个结果都有一个可能,如0、1就有两个概率) 举例: 获取数据及预测代码: from sklearn.linear_model import LogisticRegression ...