PP-OCRv4检测模型在 PP-OCRv3检测模型的基础上,在网络结构,训练策略,蒸馏策略三个方面做了优化。首先,PP-OCRv4检测模型使用 PP-LCNetV3替换 MobileNetv3,并提出并行分支融合的 PFhead 结构;其次,训练时动态调整 shrink ratio 的比例;最后,PP-OCRv4对 CML 的蒸馏 loss 进行优化,进一步提升文字检测效果。...
use_gpu=False, use_xpu=False, use_npu=False, use_mlu=False, ir_optim=True, use_tensorrt=False, min_subgraph_size=15, precision='fp32', gpu_mem=500, gpu_id=0, image_dir=None, page_num=0, det_algorithm='DB', det_model_dir='/root/.paddleocr/whl/det/ch/ch_PP-OCRv4_det_infer...
PP-OCRv4检测模型在PP-OCRv3检测模型的基础上,在网络结构,训练策略,蒸馏策略三个方面做了优化。首先,PP-OCRv4检测模型使用PP-LCNetV3替换MobileNetv3,并提出并行分支融合的PFhead结构;其次,训练时动态调整shrink ratio的比例;最后,PP-OCRv4对CML的蒸馏loss进行优化,进一步提升文字检测效果。 消融实验如下: 测试环境:...
PP-OCRv4检测模型在PP-OCRv3检测模型的基础上,在网络结构,训练策略,蒸馏策略三个方面做了优化。首先,PP-OCRv4检测模型使用PP-LCNetV3替换MobileNetv3,并提出并行分支融合的PFhead结构;其次,训练时动态调整shrink ratio的比例;最后,PP-OCRv4对CML的蒸馏loss进行优化,进一步提升文字检测效果。 消融实验如下: 测试环境:...
PP-OCRv4检测模型在 PP-OCRv3检测模型的基础上,在网络结构,训练策略,蒸馏策略三个方面做了优化。首先,PP-OCRv4检测模型使用 PP-LCNetV3替换 MobileNetv3,并提出并行分支融合的 PFhead 结构;其次,训练时动态调整 shrink ratio 的比例;最后,PP-OCRv4对 CML 的蒸馏 loss 进行优化,进一步提升文字检测效果。
本部分基于PP-OCRv4的识别模型进行优化,关于PP-OCRv4的识别模型详细描述请参考PP-OCRv4。PP-OCRv4识别模型是基于自然场景文本数据训练出的模型,对于手写体的识别效果并不好,因此需要对其进行优化,优化方案如下: 基于PP-OCRv4的识别模型直接进行评估 基于PP-OCRv4的识别模型finetune 下面依次进行介绍: 4.1 基于PP-OC...
PP-OCRv4检测模型在PP-OCRv3检测模型的基础上,在网络结构,训练策略,蒸馏策略三个方面做了优化。首先,PP-OCRv4检测模型使用PP-LCNetV3替换MobileNetv3,并提出并行分支融合的PFhead结构;其次,训练时动态调整shrink ratio的比例;最后,PP-OCRv4对CML的蒸馏loss进行优化,进一步提升文字检测效果。
人力投入大:公司专门成立算法团队,负责电子文档资料的算法模型设计、学习训练等,人力投入一直较大。02 方案设计与优势 针对以上问题,旻浦科技基于 PaddleX中PP-OCRv4模型的基础能力,将10万份证照类、文本类电子文档材料通过分类、检测、识别、提取,输出结构化信息。飞桨解决基础性、公共性通用能力,旻浦科技专注于...
人力投入大:公司专门成立算法团队,负责电子文档资料的算法模型设计、学习训练等,人力投入一直较大。 方案设计与优势 针对以上问题,旻浦科技基于PaddleX中PP-OCRv4模型的基础能力,将10万份证照类、文本类电子文档材料通过分类、检测、识别、提取,输出结构化信息。飞桨解决基础性、公共性通用能力,旻浦科技专注于业务分析...
在光学字符识别(OCR)领域,PaddleOCR凭借其强大的PP-OCR系列模型,在通用场景中展现出了卓越的性能。然而,面对复杂多变的垂直类场景,如手写文字识别、特定行业票据识别等,如何通过自定义数据微调PP-OCRv4模型,以进一步提升识别精度,成为了众多开发者关注的焦点。本文将从数据准备、标注、模型训练参数配置到推理过程,全面解...