数据中80%的方差是由前两个主成分解释的,所以这是一个相当好的数据可视化。 使用k-means聚类法将数据集聚成3组 在之前的主成分图中,聚类看起来非常明显,因为实际上我们知道应该有三个组,我们可以执行三个聚类的模型。 kmean(input, centers = 3, nstart = 100) # 制作数据 groupPred %>% print() 画一个...
本文选自《R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集》。 点击标题查阅往期内容 SPSS用K均值聚类KMEANS、决策树、逻辑回归和T检验研究通勤出行交通方式选择的影响因素调查数据分析数据分享|R语言主成分PCA、因子分析、聚类对地区经济研究分析重庆市经济指标数据分享|R语言用主成分PCA、 ...
使用R中的鸢尾花数据集k-means聚类 讨论和/或考虑对数据进行标准化。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 data.frame( "平均"=apply(iris[,1:4], 2, mean "标准差"=apply(iris[,1:4], 2, sd) 在这种情况下,我们将标准化数据,因为花瓣的宽度比其他所有的测量值小得多。 向下滑动查看...
关于使用R语言实现降维-PCA&Kmeans kaka爱数据 数据分析/数据解决方案 来自专栏 · 数据分析经验谈 8 人赞同了该文章 1、数据导入R # readr包比较好用,但是偶尔碰到百万级别的大数据时候也会报错。报错主要由于数据中有中文或者特殊字符比如‘/n’等,所以需要在从hive调取数据的时候就要进行处理了。特别是mac本,中...
拓端数据tecdat|R语言代写k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集,Tableau是一款非常棒的数据可视化商业软件,通过拖拉拽的方式迅速的实现数据可视化。而且该软件可以连接任何一种数据库,在处理大型数据时一点都不逊色。问题:使用R中的鸢
使用R中的鸢尾花数据集k-means聚类 讨论和/或考虑对数据进行标准化。 data.frame("平均"=apply(iris[,1:4],2, mean"标准差"=apply(iris[,1:4],2, sd) 在这种情况下,我们将标准化数据,因为花瓣的宽度比其他所有的测量值小得多。 向下滑动查看结果▼ ...
使用k-means聚类法将数据集聚成2组。 画一个图来显示聚类的情况 使用k-means聚类法将数据集聚成3组。 画一个图来显示聚类的情况 (b)部分:层次聚类 使用全连接法对观察值进行聚类。 使用平均和单连接对观测值进行聚类。 绘制上述聚类方法的树状图。
PCADF$KMeans预测<- Pred #绘制图表 plot(PCA, y = PC1, x = PC2,col = "预测\n聚类", caption = "鸢尾花数据的前两个主成分,椭圆代表90%的正常置信度,使用K-means算法对2个类进行预测") + 向下滑动查看结果▼ 点击标题查阅往期内容 R语言鸢尾花iris数据集的层次聚类分析 ...
R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图 我们将使用葡萄酒数据集进行主成分分析。 数据 数据包含177个样本和13个变量的数据框;vintages包含类标签。这些数据是对生长在意大利同一地区但来自三个不同栽培品种的葡萄酒进行化学分析的结果:内比奥罗、巴贝拉和格里格诺葡萄。来自内比奥罗葡萄的葡萄酒...
本部分主要介绍 R 语言FactoMineR进行 PCA 的常用代码,具体实例见下一章。 PCA(X, scale.unit =TRUE, ncp =5, graph =TRUE) X:数据框。行是个体,列是数字变量 scale.unit:一个逻辑值。如果为 TRUE,则在分析之前将数据缩放为单位方差。这种相同规模的标准化避免了一些变量因其较大的测量单位而成为主导。它...