案例一:数字列+字符列的转换 (get_dummies(df, cat_cols, drop_first=True)) 第一步,导入数据 import pandas as pd ## Load the Titanic dataset url = 'https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv' titanic = pd.read_csv(url) t = titanic.drop('Name', ...
简介: Pandas中的get_dummies()函数实战应用详解 在数据处理和分析中,类别型变量(Categorical Variables)的处理是一个重要的环节。类别型变量通常不能直接用于数值计算,因为它们是文本或标签形式的。为了能在诸如机器学习算法等需要数值输入的场景中使用这些变量,我们通常需要将它们转换为数值形式。Pandas库中的get_...
在Python中,pandas库的get_dummies函数是一个非常实用的工具,它用于将分类变量(通常是字符串或类别类型)转换为哑变量(也称为虚拟变量、指示变量或one-hot编码)。哑变量是一种二进制形式的表示,对于每个不同的类别值,都会创建一个新的列,其中对应的行会根据原数据中的类别值为1或0。 以下是如何使用pandas.get_du...
在Pandas列中应用具有重复值的get_dummies 是指在使用Pandas库进行数据处理时,对包含重复值的列进行独热编码(One-Hot Encoding)操作。 独热编码是一种常用的特征编码方法,用于将具有多个取值的离散特征转换为二进制向量表示,以便在机器学习算法中使用。在Pandas中,可以使用get_dummies函数来实现独热编码。 具体操作...
pandas.get_dummies — pandas 1.5.3 documentation (pydata.org) 将分类变量转换为虚拟/指示变量。 在数据分析领域,dummies通常被翻译为“虚拟变量”、“指示变量”或“哑变量”,这些术语都是比较通用的翻译。其中,虚拟变量(dummies) 是最接近原始英文含义的翻译,而指示变量和哑变量则更加抽象。因此,通常建议使用“...
Pandas的get_dummies()函数是处理类别型变量的强大工具。该函数接受一个DataFrame或Series作为输入,并返回一个新的DataFrame,其中包含了原始数据中的每个唯一类别作为列,并为每个原始数据实例生成相应的独热编码。 1. 基本用法 假设我们有一个包含性别信息的DataFrame: ...
这里我们首先创建了一个包含分类变量“color”的DataFrame,然后使用get_dummies()函数将其转换为虚拟变量,并设置了前缀为“color”。最后,我们将原始DataFrame与虚拟变量合并起来形成新的DataFrame,即df_with_dummies。 demo3 importos #指向父目录的一个名为data的目录 ...
pandas.get_dummies的用法pandas.get_dummies的用法 pandas.get_dummies是一个用于将分类变量转换为虚拟变量(dummy variables)的函数。它将每个分类变量的每个可能取值创建一个新的虚拟变量,并为每个观察值赋予相应的取值。 用法:pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=...
如果DataFrame的某一列中含有k个不同的值,则可以派生出一个k列矩阵或DataFrame(其值全为1和0)。pandas有一个get_dummies()函数可以实现该功能。 他后面还咨询了另外一个问题。 也得到就完美地解答。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Python基础的问题,文中针对该问题,给出了具体的解析和代...
pandas提供对one-hot编码的函数是:pd.get_dummies(),官网API 对官网提供的example进行测试,发现有以下几点需要注意的地方: 1、Series里的整数会按照one-hot进行编码,但是在DataFrame里面不会 2、特征的维度数量会有所增加 pandas.get_dummies pandas.get_dummies(data,prefix=None,prefix_sep='_',dummy_na=False,...