fd, hog_image = feature.hog(runner_copy, orientations=9, pixels_per_cell=(10,10), cells_per_block=(2,2), visualize=True, multichannel=True)# 重新缩放直方图以获得更好的显示效果hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0,10)) combined = np.hstack((hog_image...
char**argv){Mat img;vector<Rect>found;img=imread(argv[1]);if(argc!=2||!img.data){printf("没有图片\n");return-1;}HOGDescriptor defaultHog;defaultHog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());//进行检测default
opencv附带一个预训练的 HOG + 线性 SVM 模型,可用于在图像和视频流中执行行人检测 首先,使用cv2.HOGDescriptor()实例化HOG特征描述符类;然后再用cv2.HOGDescriptor_getDefaultPeopleDetector()静态函数获取行人检测训练的分类器的系数x;再之后将系数x传入cv2.HOGDescriptor.setSVMDetector()函数,用于激活默认的SVM分类...
将检测窗口中的所有块的HOG描述子组合起来就形成了最终的特征向量,然后使用SVM分类器进行行人检测。下图描述了特征提取和目标检测流程。检测窗口划分为重叠的块,对这些块计算HOG描述子,形成的特征向量放到线性SVM中进行目标/非目标的二分类。检测窗口在整个图像的所有位置和尺度上进行扫描,并对输出的金字塔进行非极大值...
对于一张有待检测目标(人头)的图片,我们先用滑动窗口选取图片上的某一块区域,利用opencv提取该区域的hog特征,将特征向量输入svm中,利用svm进行分类,判别是否是待检测目标(人头)。 本文附的代码是人头检测代码,就以人头检测为例 1、Hog特征提取 方向梯度直方图(hog)也不是什么新的算法了,而且在opencv中,也有对应的...
OpenCV实现了两种类型的基于HOG特征的行人检测,分别是SVM和Cascade,OpenCV自带的级联分类器的文件的位置在“XX\opencv\sources\data\hogcascades”(OpenCV4.x版本可用)。 opencv自带的人数检测文件,所在位置在opencv的安装目录下(下面是我的安装位置): D:\Program Files\opencv\sources\samples\cpp ...
HOG概述 HOG(HistogramofOriented Gradient)特征在对象检测与模式匹配中是一种常见的特征提取算法,是基于本地像素块进行特征直方图提取的一种算法,对象局部的变形与光照影响有很好的稳定性,最初是用HOG特征来来识别人像,通过HOG特征提取+SVM训练,可以得到很好的效果,OpenCV已经有了。HOG特征提取的大致流程如下: ...
使用OpenCv进行行人检测的主要思想: HOG + SVM HOG: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征. SVM: (Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在...
SVM,即支持向量机,在结合相关特征描述子之后,在目标识别,如行人识别、汽车识别、人脸识别等领域中有着重要应用。opencv中提供了HOG特征描述子,这种特征提供支持SVM的接口。这不再进行原理性的介绍,直接介绍如何使用opencv进行SVM+HOG训练和检测。 1、svm+hog训练 ...
使用OpenCV预训练SVM行人HOG特征分类器实现多尺度行人检测的代码如下: importcv2ascv if__name__ =='__main__': src = cv.imread("D:/images/pedestrian.png") cv.imshow("input", src) hog = cv.HOGDeor hog.setSVMDetector(cv.HOGDeor_getDefaultPeopleDetector) ...