在NSL-KDD数据集中,标签通常位于最后一列,但具体索引可能因数据版本或加载方式而异。在实际应用中,请确保根据数据实际情况调整代码。 此外,预处理步骤可能因具体需求和数据特点而有所不同。例如,对于不平衡数据的处理、异常值的检测与处理等,可能需要根据实际情况进行额外处理。
https://github.com/arjbah/nsl-kdd.git (include the most attack types) 和https://github.com/defcom17/NSL_KDD.git。数据集比较分散,train_file 和test_file 只包含样本特征和标签值,但是没有表头(header),表头的信息包含在field_name_file 中,另外关于网络攻击类型,分为5个大类,40多个小类,但是我们该...
https://github.com/arjbah/nsl-kdd.git (include the most attack types) 和https://github.com/defcom17/NSL_KDD.git。数据集比较分散,train_file 和test_file 只包含样本特征和标签值,但是没有表头(header),表头的信息包含在field_name_file 中,另外关于网络攻击类型,分为5个大类,40多个小类,但是我们该...
https://github.com/arjbah/nsl-kdd.git(include the most attack types) 和https://github.com/defcom17/NSL_KDD.git。 数据集比较分散,train_file和test_file 只包含样本特征和标签值,但是没有表头(header),表头的信息包含在field_name_file 中,另外关于网络攻击类型,分为5个大类,40多个小类,但是我们该...
NSL-KDD数据集可用于网络入侵检测系统(NIDS)的研究和评估。 以下是NSL-KDD数据集的使用方法: 1.下载数据集:可以从官方网站或相关资源网站(如GitHub)下载NSL-KDD数据集的压缩包。 2.解压数据集:将下载的压缩包解压到指定文件夹中,得到数据集的CSV文件。 3.读取数据集:使用Python或其他适合的编程语言读取数据集的...
简介:多分类机器学习中数据不平衡的处理(NSL-KDD 数据集+LightGBM) 前言 数据不平衡问题在机器学习分类问题中很常见,尤其是涉及到“异常检测"类型的分类。因为异常一般指的相对不常见的现象,因此发生的机率必然要小很多。因此正常类的样本量会远远高于异常类的样本量,一般高达几个数量级。比如:疾病相关的样本,正常的...
数据源是NSL-KDD 数据包。数据源来自:https://www./cic/datasets/nsl.html。简单介绍一下数据源,NSL-KDD是为解决在中KDD'99数据集的某些固有问题而推荐的数据集。尽管该数据集可能无法完美地代表现有的现实网络世界,但是很多论文依然可以用它作有效的基准数据集,以帮助研究人员比较不同的入侵检测方法。
关键问题在于如何平衡数据,让模型公平对待所有类别。本文以NSL-KDD数据集和lightgbm为例,探讨解决策略。首先,我们通过这个数据集,观察到类别分布的严重不平衡,正常类样本占绝对多数。作为基准,我们直接使用lightgbm的默认参数训练模型,但结果可能因数据倾斜而受到影响。为了改善,我们考虑了参数调整和重采样...
首先导入实验数据集,训练集使用NSL-KDD的Train+,测试集使用NSL-KDD的Test+。数据集包含43个特征,其中三个字符型特征需手动添加列。进行独热编码处理,"protocol_type"、"service"、"flag"三个特征采用One-Hot编码,以使机器学习算法识别。特征列合并,训练集与测试集数据合并。数据归一化处理,采用Min...
qp = pd.read_csv('nsl-kdd/KDDTest+.txt', header=None) 数据集中一共有43 个特征,因为TXT文件中没有索引,所以我们手动添加特征列 '===数据预处理===' df.columns = ['duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', '...