首先从运行结果来看,bboxes和gt_bboxes的匹配结果为[1,2,0,0]。其含义是指:第一个bbox匹配第一个gt,第二个bbox匹配第二个gt,第三四个bbox匹配背景(0表示背景)。接下来,我们分析源码: overlaps = self.iou_calculator(gt_bboxes, bboxes) # 创建一个-1的tensor,用来保存匹配的结果。-1表...
importinspectimportalbumentationsimportmmcvimportnumpyasnpfromalbumentationsimportComposefromimagecorruptionsimportcorruptfromnumpyimportrandomfrommmdet.core.evaluation.bbox_overlapsimportbbox_overlapsfrom..registryimportPIPELINES@PIPELINES.register_moduleclassResize(object):"""Resize images & bbox & mask.This transform...
i got this error from .bbox import bbox_overlaps_cython I importError: /mmdet/core/bbox/bbox.so: undefined symbol: _Py_ZeroStruct
OpenMMLab Detection Toolbox and Benchmark. Contribute to open-mmlab/mmdetection development by creating an account on GitHub.
(device) if assign_result.labels is not None: assign_result.labels = assign_result.labels.to(device) return assign_result def assign_wrt_overlaps(self, overlaps, gt_labels=None): num_gts, num_bboxes = overlaps.size(0), overlaps.size(1) # 由于每次传入的是一张图,所以assigned_gt_inds是...
(device) if assign_result.labels is not None: assign_result.labels = assign_result.labels.to(device) return assign_result def assign_wrt_overlaps(self, overlaps, gt_labels=None): num_gts, num_bboxes = overlaps.size(0), overlaps.size(1) # 由于每次传入的是一张图,所以assigned_gt_inds是...
-1表示当前bbox为忽略样本 assigned_gt_inds = overlaps.new_full((num_bboxes, ), -1, dtype=torch.long) # 从列方向看分别得到每个bbox和哪个gtbox的iou最大 max_overlaps, argmax_overlaps = overlaps.max(dim=0) #将iou低于阈值[0,0.4]的置为0,即处于该范围阈值的bbox为背景。
from mmdet.core import (distance2bbox, multi_apply, reduce_mean, bbox2result, bbox_overlaps) from mmcv.runner import force_fp32 In the latest version, where did 'force_fp32' and 'mmdet. core' move to
copying mmdet/core/evaluation/bbox_overlaps.py -> build/lib.linux-x86_64-3.7/mmdet/core/evaluation copying mmdet/core/evaluation/class_names.py -> build/lib.linux-x86_64-3.7/mmdet/core/evaluation copying mmdet/core/evaluation/recall.py -> build/lib.linux-x86_64-3.7/mmdet/core/evaluation ...