ImageNet包含2万多个类别,比如:“气球”、“轮胎”和“狗”等类别,ImageNet的每个类别均有不少于500张图像。 训练这么多图像需要消耗大量的资源,因此在2016年google DeepMind团队Oriol Vinyals等人在ImageNet的基础上提取出了miniImageNet数据集。 MiniImageNet和omniglot数据集在图像分类、元学习和小样本学习领域应用广泛...
ImageNet包含2万多个类别,比如:“气球”、“轮胎”和“狗”等类别,ImageNet的每个类别均有不少于500张图像。训练这么多图像需要消耗大量的资源,因此在2016年google DeepMind团队Oriol Vinyals等人在ImageNet的基础上提取出了miniImageNet数据集。 二. miniImageNet介绍 来源:DeepMind团队首次将miniImageNet数据集用于小样...
miniImageNet是一个在元学习和小样本学习领域广泛应用的数据集,由DeepMind团队从ImageNet数据集中提取而成,旨在解决大型数据集训练资源消耗过大的问题。ImageNet是一个著名的视觉数据集,包含超过1400万张图像,为2万多个类别进行了标注,每个类别至少有500张图像。Google DeepMind团队在2016年基于ImageNet数...
这里,这个数据集的训练集和测试集的类别划分为:5:1。相比于CIFAR10数据集,miniImageNet数据集更加复杂,但更适合进行原型设计和实验研究。 https://studio.brainpp.com/dataset/2313?name=mini_imagenet 下载过程 注册账号-启动环境-在dataset文件夹找到mini-imagenet数据集压缩包-将其拖动到workspace文件夹-右击压缩...
MiniImageNet数据集是基于ImageNet数据集的一个子集,ImageNet是一个大型的图片数据库,包含了超过1400万的高分辨率图片,涵盖了超过1万个类别。MiniImageNet从ImageNet中随机选择了100个类别,并从每个类别中随机选取了600张图片,形成了一个有60000张图片的小型数据集。 MiniImageNet中的图片仍然保持了ImageNet的高分辨率...
MiniImageNet 的数据集包含了 100 个类别,每个类别包含 600 张图片,总共约 60,000 张图片。这些图片是从 ImageNet 数据集中挑选出来的,以保证各个类别的图片具有代表性。 MiniImageNet 的主要特点包括: (1)小型数据集:相较于 ImageNet 数据集,MiniImageNet 的图片数量较少,可以节省计算资源和时间。 (2)分类...
这个项目中的miniImageNet数据集是从ImageNet2012数据集中抽取出来的,在小样本机器学习领域这个miniImageNet数据集其实不仅仅是图片数据集其实也包括你定义的episode任务数据。 可以看到图片数据集为train, test, val 这三个文件夹, 另外三个pkl文件则是Few shot learning中对episode task的定义文件。
这个项目中的miniImageNet数据集是从ImageNet2012数据集中抽取出来的,在小样本机器学习领域这个miniImageNet数据集其实不仅仅是图片数据集其实也包括你定义的episode任务数据。 可以看到图片数据集为train, test, val 这三个文件夹, 另外三个pkl文件则是Few shot learning中对episode task的定义文件。
ImageNet 是一个大型图像数据集,包含了数百万张图片,被广泛用于训练和测试计算机视觉模型。然而,由于 ImageNet 的大小和复杂性,它并不适合所有研究和实验。因此,为了方便研究,人们创建了 MiniImageNet,它包含了 ImageNet 数据集中的一小部分图像。 MiniImageNet 的格式通常包括以下内容: 1.图像文件:MiniImageNet ...
通常而言,这个数据集的训练集和测试集的类别划分为:80 : 20。 相比于CIFAR10数据集,miniImageNet数据集更加复杂,但更适合进行原型设计和实验研究。 数据集架构 Mini_ImagesNet.tar.gz(已将图片处理为84*84)mini-imagenet一共有2.86GB,文件架构如下: root/ .├── images├── train.csv├── test.csv├...