elementary multiplication是指普通的乘法,比如1*2执行了一次elementary multiplication,1*2+6*9执行了两次elementary multiplication。矩阵相乘elementary multiplication次数的计算方法:设有50*10的矩阵A和10*20的矩阵B,显然成绩的结果是一个50*20的矩阵C,C中有50*20=1000个元素,每个元素是由A中一行10个元素和B中一...
1#include <iostream>2#include <cstdio>3#include <cstring>4#include <stack>5usingnamespacestd;6structMax {7introw;8intcol;9} m[100];10boolflg;11intn,num;12charc,ch[100];13intmain() {14//freopen("C:\\CODE\\in.txt","r", stdin);15//freopen("C:\\CODE\\out.txt","w",stdou...
UVA - 442 Matrix Chain Multiplication 双端队列 题目大意:给出n个矩阵和表达式,问该表达式是否正确,如果计算正确,输出计算了多少次 解题思路:双端队列,遇到右括号时弹出后面的两个矩阵进行乘法,相乘时要注意顺序,是第二个出队列的乘上第一个出队列的。 #include<cstdio> #include<algorithm> #include<deque> #...
Matrix(inta=0,intb=0):a(a),b(b) {} }m[26];//定义了一个结构体变量,并把两个成员都初始化为0 stack<Matrix>s; intmain() { intn; cin>>n; for(inti=0;i<n;i++) { stringname; cin>>name; intk=name[0]-'A'; cin>>m[k].a>>m[k].b; }//输入每个矩阵,并把相应的行和列...
Matrix-chainmultiplication Matrix-chainmultiplication 问题描述 Input:{p0, p1 ,... , p n}. a chain {A1, A2,..., A n} of n matrices for i = 1, 2,...,n , matrix A i has dimension p i-1 * p i.值得注意的该问题的输⼊定义及其巧妙,不仅定义了矩阵的⾏以及列,还说明了它们是...
UVA442 矩阵链乘 Matrix Chain Multiplication 简介:UVA442 矩阵链乘 Matrix Chain Multiplication 题目描述 思路:首先要明白以下几点: 什么是矩阵乘法?(大概学过线代的都知道) 什么矩阵不可乘? A a*b B c*d 当 b = c时,两个矩阵可以相乘,同时结果为 C a*d...
Matrix chain multiplication is one of the classic optimization problems in computer science. For a given sequence \\(A_{1}\\), \\(A_{2},\\ldots ,A_{n}\\) of matrices, we need to compute the product of these matrices using the minimum number of scalar multiplications on a single ...
网络释义 1. 矩阵链相乘 www.nexoncn.com|基于2个网页 2. 矩阵相乘 ...ecutive Sum) 、最大子矩阵、最大矩形、矩阵相乘(Matrix-Chain Multiplication) 、拿石头、旅行推销员问题 (Traveling Sales… web.fg.tp.edu.tw|基于 1 个网页 3. 或矩阵连乘问题 ...
Matrix Chain Multiplication Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depe...
Journal of Applied Computer Science & MathematicsB. Bhowmik, "Simplified optimal parenthesization scheme for matrix chain multiplication problem using bottom-up practice in 2- tree structure," Journal of Applied Computer Science & Mathematics, vol. 11, no. 5, pp. 9-14, 2011....