一、强化学习之Q-learning算法 Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当...
Q-learning算法是强化学习算法中的一种,该算法主要包含:Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息,来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果,因此在Q-learning算法中更新Q表就是机器人与环境的交互过程。机器人在当前状态s(t)下,选择动作a,通过...
Q-Learning它是强化学习中的一种 values-based 算法,是以QTable表格形式体现,在学习中遇到的任何操作存入QTable中,根据之前的学习选择当前最优操作,也可以根据设置的e_greedy机率随机选择。 Q-Learning的QTable标签更新公式: Q-Learning的计算步骤: 1.判断在当前位置可以有几种操作; ...
Q-Learning是一种无模型的强化学习算法,特别适合于离散动作空间的问题。在机器人避障和路径规划中,Q-Learning可以帮助机器人学习如何在未知环境中寻找到达目标的最短路径,同时避免碰撞障碍物。 2.1 Q-Learning原理 Q-Learning是一种基于价值迭代的算法,其目标是找到一个策略,使得在给定状态下选择的动作能够最大化未来...
1.算法仿真效果 matlab2022a仿真结果如下: 2.算法涉及理论知识概要 Q-Learning是一种无模型的强化学习算法,它能够使代理(Agent)在与环境互动的过程中学习最优策略,无需了解环境的完整动态模型。在迷宫路线规划问题中,Q-Learning被用来指导代理找到从起点到终点的最优路径,通过不断尝试和学习来优化其行为决策。
Q-learning机器人路径规划算法 机器人路径规划,机器人路径避障。求解常见的路径规划问题。内含算法的注释,模块化编程。 强化学习中的价值学习算法是一类重要的强化学习算法,它们通过学习价值函数来指导智能体的行为选择。价值函数表示在特定状态下,智能体采取不同行动所能获得的长期累积回报的期望值。Q学习是一种基于状态...
【路径规划】基于matlab A_Star算法和Q_learning算法栅格地图机器人路径规划【含Matlab源码 9139期】985研究生,Matlab领域优质创作者(1)如需代码加腾讯企鹅号,见评论区或私信;(2)代码运行版本Matlab 2019b(3)其他仿真咨询1 完整代码包运行+运行有问题可咨询2 期刊
Q-learning算法实现1(matlab) 算法伪代码: 得到Q表后,根据如下算法选择最优策略: 以机器人走房间为例,代码实现如下: 原文链接如下:https://www.jianshu.com/p/29db50000e3f 注:原文中的房间状态0-5分别对应代码中1-6 代码输出: Q表: 最优策略:... 查看原文 吴恩达机器学习笔记-特征缩放 特征缩放 在...
Q-Learning它是强化学习中的一种 values-based 算法,是以QTable表格形式体现,在学习中遇到的任何操作存入QTable中,根据之前的学习选择当前最优操作,也可以根据设置的e_greedy机率随机选择。 Q-Learning的QTable标签更新公式: Q-Learning的计算步骤: 1.判断在当前位置可以有几种操作; ...
1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022A 3.算法理论概述 路径规划在机器人、自动驾驶等领域中具有重要应用。Q-learning是一种经典的强化学习算法,可以用于解决路径规划问题。本文介绍了基于Q-learning的路径规划算法,该算法可以在未知环境中学习最优路径,具有广泛的应用前景。Q-learning是一种基于值函数...