用连续小波变换 (CWT) 和深度卷积神经网络 (CNN) 对人体心电图 (ECG) 信号进行分类,并进行特征可视化便于以后的深入分析。由于从头训练深度 CNN 的计算成本很高,并且需要大量的训练数据,在很多应用中并没有足够数量的训练数据可用,因此采用迁移学习方法(GoogLeNet 和 SqueezeNet)对ECG波形的CWT时频谱图进行分类,所用...