可以看出我们图4中的结构采用的是图8的结构2,这种结构要求Mask RCNN的backbone使用FPN网络(特征金字塔网络),可以看出结构2中class、box分支和Mask分支不共用一个ROI层,这是为了保证mask分支拥有更多的细节信息。图8的结构1要求Maks RCNN的backbone采用resnet结构,也即不使用FPN结构。其实我倒是认为这两种结构差的不...
此外,对于Mask RCNN整理流程,图中的分支①和分支②部分论文给出了两种结构,如下图所示: 图Mask分支两种结构 结构2要求Mask RCNN的backbone使用FPN网络(特征金字塔网络),可以看出结构2中class、box分支和Mask分支不共用一个ROI层,这是为了保证mask分支拥有更多的细节信息。结构1要求Maks RCNN的backbone采用resnet结构,...
Mask RCNN继承自Faster RCNN主要有三个改进: feature map的提取采用了FPN的多尺度特征网络 ROI Pooling改进为ROI Align 在RPN后面,增加了采用FCN结构的mask分割分支 网络结构如下图所示: 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨干网络 FPN 卷积网络的一...
Faster R-CNN = Fast R-CNN + RPN 如下图,有一个RPN(Region Proposal Network)网络(此时,Faster RCNN已经去除了Selective Search的方案), 在特征图上,找到候选区域后,先进行二分类和回归;如果是正例,进一步地,然后在网络末端进行20分类和回归(还是two-stage)。训练的时候,loss有四项,如下图。 网络中的RPN层...
一、mask-rcnn整体结构图 结合物体检测和图像分割为一体的网络结构 二、ResNet-FPN特征提取 详细结构图如下 M 经过 3*3卷积核生成 channel 256 的特征图 生成特征图【p2,p3,p4,p5,p6】 那各个特征图对应到原图的步长依次为[P2,P3,P4,P5,P6]=>[4,8,16,32,64] ...
Mask-RCNN模型的基本结构 也许您还记得我们之前介绍过的Mask R-CNN整体架构,它的3个主要网络: backbone网络,用于生成特征图 RPN网络,用于生成实例的位置、分类、分割(mask)信息 head网络,对位置、分类和分割(mask)信息进行训练 在head网络中,有分类、位置框和分割(mask)信息的3个分支,我们可以对head网络进行扩展,...
网络头结构如下图: 网络头结构 5. Implementation Details Training 和Faster R-CNN一样,IOU超过0.5的ROI被视为正例反之视为负例。mask loss只在正例上定义。mask target 是ROI和GT mask的交集。图像被resize到短边800。每个mini-batch 2幅图像,每幅图像采样N个ROI,正负样本比例1:3。N是64对于Resnet主干,512...
图1用于实例分割的Mask R-CNN框架 实例分割工作之所以很难,是因为它要求对同一图像中的多个对象进行精确的探测和分割,这样的工作需要结合经典经算计视觉的目标探测任务(tasks of object detection)中的多个元素,目标探测任务需要将每个个体实例进行分类,并在边界框内进行定位,最后进行语义分割(将每个像素进行分类的工作)...
图1 Mask R-CNN框架 我们的方法是通过增加应用在每一个RoI上预测分割掩膜的分支从Faster R-CNN扩展而来,该分支与已存在的分类分支和边界框回归分支保持平行(如图1所示),我们称该方法为Mask R-CNN。Mask分支是一个应用在每一个RoI上的小全卷积网络(FCN),以像素到像素的方式来预测分割掩膜。Mask R-CNN在给定的...