Mask-RCNN 继承自 Faster-RCNN,是由何凯明等人在 2017 年提出,对 Faster-RCNN 进行了改进,并添加了掩码分支,能够实现像素级别的分类,将目标检测扩展到实例分割。Mask-RCNN 框架由骨干网(backbone)、区域建议网络(RPN)、head 分支 3 个部分构成,如下图 所示。其中骨干网也有很多种组合类型,主要包括 ResNet50+...
Mask_RCNN是何凯明基于以往的faster-rcnn构架提出的新的卷积网络,该方法再有效的目标的同时完成了高质量的语义分割。主要思路就是把原有的faster-rcnn进行扩展,添加一个分支使用现有的检测对目标进行并行预测,可以很方便的应用其他的应用领域,向目标检测,分割和人物关键点检测等。其网络结构如下。 Mask-RCNN是在faste...
比如字节跳动的实习生王鑫龙(阿德莱德大学在读博士生),提出了实例分割新方法SOLO,引入“实例类别”的概念,把实例分割问题转化为分类问题,在一些指标上,性能还要超过何恺明提出的Mask R-CNN。 还有地平线的一名实习生黄钊金(华中科技大学硕士生),也曾提出过性能优于何恺明提出的Mask R-CNN的方案,并被CVPR 2019收录。
上周,AI 科技评论报道了 Facebook 实验室出炉的新论文《Mask R-CNN》,第一作者何恺明带领团队提出了一种名为「Mask R-CNN」的目标实例分割框架。研究显示,该框架相比传统的操作方法更佳简单灵活。 论文地址:https://arxiv.org/abs/1703.06870 如果对物体识别和分割技术有所了解的读者们,可能对这个流程并不陌生。
Mask R-CNN 使用了与Faster R-CNN相通的两阶段流程,第一阶段叫做RPN(Region Proposal Network),此步骤提出了候选对象边界框。第二阶段本质上就是FastR-CNN,它使用来自候选框架中的RoIPool来提取特征并进行分类和边界框回归,但Mask R-CNN更进一步的是为每个RoI生成了一个二元掩码,我们推荐读者进一步阅读Huang(2016)...
Mask R-CNN添加一个分支来预测每个关注区域(RoI)上的分割蒙版,从而扩展了Faster R-CNN,与现有的用于分类和边界框回归的分支并行,整体结构如下图所示: RoIAlign替代RoIPool Mask R-CNN和Fast R-CNN一样,均属于两阶段的目标检测,第一阶段是从原图中提取感兴趣区域(Rol)。
Mask R-CNN 使用了与Faster R-CNN相通的两阶段流程,第一阶段叫做RPN(Region Proposal Network),此步骤提出了候选对象边界框。第二阶段本质上就是FastR-CNN,它使用来自候选框架中的RoIPool来提取特征并进行分类和边界框回归,但Mask R-CNN更进一步的是为每个RoI生成了一个二元掩码,我们推荐读者进一步阅读Huang(2016)...
对于Backbone网络,Mask R-CNN基本使用了之前提出的架构,同时添加了一个全卷积的Mask(掩膜)预测分支。Figure3展示了两种典型的Mask R-CNN网络结构,左边的是采用ResNet 或者ResNeXt 做网络的backbone提取特征,右边的网络采用FPN网络做Backbone提取特征,最终作者发现使用ResNet-FPN作为特征提取的backbone具有更高的精度和更...
Mask Scoring R-CNN论文: https://arxiv.org/abs/1903.00241 GitHub地址: https://github.com/zjhuang22/maskscoring_rcnn Mask R-CNN的其他优化思路 在此之前,也有人提出了优化Mask R-CNN的思路。 比如,香港中文大学、北京大学、商汤科技、腾讯优图在CVPR 2018发表的一篇论文,提出了一个名为PANet的实例分割...
Mask R-CNN是何凯明大神最近的新作。Mask R-CNN是一种在有效检测目标的同时输出高质量的实例分割mask。是对faster r-cnn的扩展,与bbox识别并行的增加一个预测分割mask的分支。Mask R-CNN 可以应用到人体姿势识别。并且在实例分割、目标检测、人体关键点检测三个任务都取得了现在最好的效果。