Mask R-CNN(Mask Region-based Convolutional Neural Network)是一种用于目标检测和实例分割的深度学习模型,它是 Faster R-CNN 的扩展,同时可以生成目标的二进制掩码(mask),因此可以实现精确的实例分割。 \1. 骨干网络:Mask R-CNN通常使用骨干网络(如 ResNet)来提取图像特征。这些特征用于目标检测和分割任务。 \2...
Mask R-CNN是一个非常灵活的框架,可以增加不同的分支完成不同的任务,可以完成目标分类、目标检测、语义分割、实例分割、人体姿势识别等多种任务。 优点 高速和高准确率:为了实现这个目的,作者选用了经典的目标检测算法Faster-rcnn和经典的语义分割算法FCN。Faster-rcnn可以既快又准的完成目标检测的功能;FCN可以精准的...
Mask R-CNN是一个实例分割(Instance segmentation)算法,通过增加不同的分支,可以完成目标分类、目标检测、语义分割、实例分割、人体姿势识别等多种任务,灵活而强大。 Mask R-CNN进行目标检测与实例分割 Mask R-CNN进行人体姿态识别 其抽象架构如下: 首先,输入一幅你想处理的图片,然后进行对应的预处理操作,或者预处理...
MaskR-CNN是ICCV2017的best paper。 MaskRCNN主要思想继承于FasterRCNN,MaskRCNN的框架是: FasterRCNN(ROIPool——>ROIAlign)——>目标检测;分类和回归框 FCN(对每个像素softmax——>对每个像素sigmoid)——>语义分割;mask掩模 MaskRCNN——>FasterRCNN+FCN FasterRCNN存在的一个大问题是分割后的图像分辨率...
Mask R-CNN是在Faster R-CNN的基础上进行了改进,其主要改进是在候选框分类阶段引入了语义分割分支,用于生成候选框的像素级掩码。具体来说,Mask R-CNN首先使用共享的特征提取网络对图像进行特征提取,然后使用区域建议网络生成候选框。接下来,Mask R-CNN将每个候选框的特征与对应的图像特征进行融合,然后分别通过分类分...
Figure3展示了两种典型的Mask R-CNN网络结构,左边的是采用或者做网络的backbone提取特征,右边的网络采用FPN网络做Backbone提取特征,这两个网络的介绍均在公众号的往期文章中可以找到,最终作者发现使用ResNet-FPN作为特征提取的backbone具有更高的精度和更快的运行速度,所以实际工作时大多采用右图的完全并行的mask/分类回归...
Mask_RCNN是何凯明基于以往的faster-rcnn构架提出的新的卷积网络,该方法再有效的目标的同时完成了高质量的语义分割。主要思路就是把原有的faster-rcnn进行扩展,添加一个分支使用现有的检测对目标进行并行预测,可以很方便的应用其他的应用领域,向目标检测,分割和人物关键点检测等。其网络结构如下。
1.双阶段的 Mask R-CNN (2017.3) Mask-RCNN通过增加不同的分支可以完成目标分类,目标检测,语义分割,实例分割,人体姿态估计等多种任务。对于实例分割来讲,就是在Faster-RCNN的基础上(分类+回归分支)增加了一个分支用于语义分割,其抽象结构如下图所示: ...
也许您还记得我们之前介绍过的Mask R-CNN整体架构,它的3个主要网络: backbone网络,用于生成特征图 RPN网络,用于生成实例的位置、分类、分割(mask)信息 head网络,对位置、分类和分割(mask)信息进行训练 在head网络中,有分类、位置框和分割(mask)信息的3个分支,我们可以对head网络进行扩展,加入一个人体关键节点keypoi...