LORA (Low-Rank Adaptation) 是一种高效微调大型预训练模型的方法。它通过冻结预训练模型的权重,并在Transformer架构的每一层中引入可训练的秩分解矩阵,显著减少了可训练参数的数量,从而确保了更加高效的适应过程。具体来说,它将一个大矩阵分解为两个低秩矩阵的乘积,即 weight[ho] = w1[hr] @ w2[ro],其中 r...
根据式(1),在模型训练完成之后,我们可以直接将A和B加到原参数上,从而在推理时不会产生额外的推理时延。(1)h=W0x+ΔWx=(W0+ΔW)x=Wx+BAx 图2:在训练时,LoRA在预训练权值旁插入了一组和它并行的低秩矩阵 在初始化时,\boldsymbol A使用高斯初始化,\boldsymbol B使用的零矩阵\boldsymbol 0进行的初始化。
Low-Rank Adaptation的工作原理是通过在其权重矩阵中引入低秩矩阵来适应预训练的语言模型。该低秩自适应层初始化随机值,并在微调过程中更新。Low-Rank Adaptation的适应过程的关键步骤包括初始化(从一个预训练的语言模型开始,并在其权重矩阵中添加一个低秩适应层)和微调(在新的任务或领域上训练模型,只更新低秩适应层,...
简介:LoRA,即低秩适应,是一种优化深度学习模型的方法,通过低秩分解来减少参数数量和降低GPU显存占用。这种方法对于大型语言模型等具有巨大参数量的模型尤其有效,能够显著提高训练效率和资源利用率。本文将介绍LoRA的基本原理、实现方法以及应用场景,并通过实例展示其效果。 千帆应用开发平台“智能体Pro”全新上线 限时免费体...
LoRA(Low-Rank Adaptation) 通过引⼊低秩矩阵分解,在减少计算资源和存储需求的同时,保持了预训练模型的初 始性能,稳定了微调过程,并降低了存储和部署成本。它特别适⽤于⼤规模模型的微调,在资源有限的环境中具有显 著的优势。 存储与计算效率:通过低秩适应(LoRA),可以显著减少所需存储的参数数量,并减少计算需求...
LoRA(Low-Rank Adaptation of Large Language Models)-- 一种大模型prompt-tuning调优方法 一、Pre-train + Fine-tuning范式 0x1:为什么要微调 对于数据集本身很小(几千张图片/几千段文本)的情况,从头开始训练具有几千万参数的大型神经网络是不现实的,因为越大的模型对数据量的要求越大,过拟合无法避免。这时候...
一些针对Low Rank Adaptation的补充Low Rank方法提出的假设:现阶段的LLM模型参数很多都是十亿级起步,很多的工作研究表明,深度...展开 2023-12-12 09:011回复 再让我刷一集 问一下,为啥steps多了会超显存呀,按道理训练步数应该不会影响现存大小 2023-08-18 07:271回复 跟Roonie学AI思维对于大语言模型的训练,选...
另外对于适配器学习来说,它们一般会向网络层中插入一些可学习的模块,同时这也带来了推理时间的增加。我们这里介绍一个近期训练LLM普遍使用的PEFT算法:LoRA(Low Rank Adaptation)[1]名思义,LoRA的核心思想是基于低秩的适配器进行优化。 1. 背景知识 1.1 什么是秩?
另外对于适配器学习来说,它们一般会向网络层中插入一些可学习的模块,同时这也带来了推理时间的增加。我们这里介绍一个近期训练LLM普遍使用的PEFT算法:LoRA(Low Rank Adaptation)[1]名思义,LoRA的核心思想是基于低秩的适配器进行优化。 1. 背景知识 1.1 什么是秩?