结果1 题目双对数模型 lnY 1lnX 中,参数 1的含义是( ) A. X的相对变化,引起Y的期望值绝对量变化 B. Y关于X的边际变化 C. X的绝对量发生一定变动时,引起因变量 Y的相对变化率 D. Y关于X的弹性 相关知识点: 试题来源: 解析 D 反馈 收藏
1.lnx+lny=lnxy;2.lnx-lny=ln(x/y);3.lnxⁿ=nlnx;4.ln(ⁿ√x)=lnx/n;5.lne=1 6.ln1=0;7.log(A*B*C)=logA+logB+logC;logA^n=nlogA;8.logaY=logbY/logbA;9.log(a)(MN)=log(a)(M)+log(a)(N);10.log(A)M=log(b)M/log(b)A(b>0且b≠1)。
在使用Eviews软件进行回归分析时,首先需要打开数据窗口,输入要分析的变量,这里是lny、c、lnx1、lnx2和x3。将这些变量依次输入至Quick-Estimate Equation对话框中,确保每个变量间用空格隔开,最后点击确定按钮,即可得到回归分析的结果。完成回归分析后,为了查看具体的回归方程,可以在主菜单中选择View-Re...
解析假如lnx﹣lny<〔x>1,y>1〕,如此〔 〕 A.ey﹣x>1B.ey﹣x<1C.ey﹣x﹣1>1D.ey﹣x﹣1<1 解:依题意,, 令,如此, ∴函数f〔t〕在R上单调递增, ∵,即f〔lnx〕 ∴lnx ∴1 ∴y﹣x>0, ∴ey﹣x>e=1. 应当选:A.反馈 收藏
1.函数的图像 1 函数y=lnx的图像示意图。2 其导数y‘=1/x的图像示意图。2.函数的导数 1 y=lnx及其导数的五点值 2 y=lnx及其导数在同一坐标系的示意图。3.函数y=lnx切线 1 y=lnx五点处切线的斜率。2 函数上5个点的切线的解析式。4.函数y=lnx切线的图像 1 五条函数y=lnx的切线在同一坐标系上的...
1 阴影部分面积即为所求面积。这种形状用y作为积分变量比较方便一点。将两条曲线分别转变为y的函数,可得x=-y+1,x=e^y,积分变量为y从0→1。S阴影=∫(0→1)(x2-x1)dy。=∫(0→1)[e^y-(-y+1)]dy。=e。 用分步积分法:∫(0→1)xarctanxdx。=1/2∫(0→1)arctanxdx^2。=1/2[(...
|lnx|+|lny|=1 x>0,y>0 x≥1 y≥1→xy=e x≥1 y≤1→x/y=e x≤1 y≥1→y/x=e x≤1 y≤1→xy=1/e 围成的面积=大曲边梯形-下方梯形+大三角形-小曲边梯形-小三角形 大曲边梯形=∫(1-e)e/xdx=elnx|(1-e)=e 下方梯形=1/2(1/e+1)·(e-1)=(e²-1)/...
对数函数公式运算法则lnx+lny=lnxy;lnx-lny=ln(x/y);lnx=nlnx;ln(√x)=lnx/n;lne=1;ln1=0;对数函数介绍:对数函数(Logarithmic Function)是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么...
减法性质: 对于任意正数x和y (x > y),有ln(x/y) = lnx - lny 这些性质和公式在数学和相关学科的研究中起到重要作用,经常被用于求解各种数学问题和数值计算。对于进一步学习指数函数和对数函数的应用和相关知识,可以深入了解函数的性质和公式。 --本内容来自许老师 ...
lne=1,lnx=y,x=e^y 1.一个是指数运算,一个是对数运算。它们可以互相转化,但不能同时存在。以常数e为底数的对数叫做自然对数,记作lnN(N>0)。2.e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以...