当x大于1时,ln大于0,当x大于0小于1时,ln小于0。根据查询对数函数相关信息显示,lnx当x大于1时,ln大于0,当x大于0小于1时,ln小于0。如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(...
高考比大小绝招,深入理解sinx和ln(1+x)的泰勒公式!#高中数学 #2023高考 #高中 #高中学习方法和技巧 - 超神高中数学于20230325发布在抖音,已经收获了3078.0万个喜欢,来抖音,记录美好生活!
答案 前者构造函数f(x)=ln(1+x),在(0,x)区间运用拉格朗日中值定理.后者构造f(x)=e的x次方,在在(0,x)区间运用拉格朗日中值定理相关推荐 1用拉格朗日中值定理证明如下两个题:ln(1+x)大于x/1+x,小于x,(x大于0).e的x次方大于1+x(x不等于0) 反馈...
画张图,ln(x+1)的图像是lnx图像往左移一个单位,然后画y=1的图,一看就知道它们只有一个交点啦,x=e-1时一样大,x>e-1时ln(x+1)>1,x<e-1时ln(x+1)<1
ln(1+x)和x比较大小,在定义域为R上 解:y=ln(1+x)的定义域为1+x>0,即x>-1;y=x定义域是R;因此只能在(-1,+∞)比较。y'=1/(1+x),故y'(0)=1;即y=ln(1+x)在(0,0)处的切线与直线y=x重合;而当x≠0时曲线y=ln(1+x)都 在直线y=x的下面。故可断言:x=0时ln(...
x-ln(1+x)≥ 0 x≥ln(1+x)令f(x)=ln(1+x)-x f'(x)=1/(1+x)-1≤0 (0≤x≤1)因此函数f(x)在0≤x≤1递减,注意不是单减,除去x=0这个点才是单减。因此f(x)=ln(1+x)-x≤0,(等于当且仅当x=0时成立)。即ln(1+x)≤x,(等于当且仅当x=0时成立)。性质1 ...
2. 由此可得 x - ln(1+x) ≥ 0。3. 进一步推导得到 x ≥ ln(1+x)。4. 定义函数 f(x) = ln(1+x) - x,求导得 f'(x) = 1/(1+x) - 1。5. 当 0 ≤ x ≤ 1 时,f'(x) ≤ 0,说明函数 f(x) 在区间 [0, 1] 上是递减的,需要注意的是,除了 x = 0 这一点...
ln(1+x)<x
【答案】:[证明]令f(x)=ln(1+x)-x,则f(0)=0,f'(x)=<0,所以,f(x)在(0,+∞)内单减,从而当x>0时,f(x)<f(0)=0,即ln(1+x)<x.[点评]此结论可以直接使用.
充分不必要 谢谢 因为lnx>1 ~lnx>0 由图像可知x必大于1 而x>1却不能推出lnx>1(需x大于e才满足) 望采纳