➣kmalloc(), __get_free_pages申请的内存位于物理地址映射区,而且在物理上也是连续的,返回的虚拟地址与真实的物理地址(物理地址是连续的,虚拟地址也是连续的)只有一个固定的偏移,因此存在较简单的转换关系。 ➣而vmalloc申请的内存位于vmalloc虚拟内存分配区(这些区都是以线性地址为度量),它在虚拟内存空间给出...
pgd_t 是该进程用户空间地址映射到物理地址时使用 vm_area_struct 是进程用户空间已映射到物理空间的虚拟地址区间,mmap是该空间区块组成的链表。 虚拟空间的空洞:虚拟空间还未被映射的区块(即没有被使用),那么就没有vm_area_struct结构 2.2 内存区间 /* * This struct defines a memory VMM memory area. There...
该结构体定义在<linux/mm_types.h>头文件中。 该结构体的vm_flags成员赋值的标志为:VM_IO和VM_RESERVED。 其中:VM_IO表示对设备IO空间的映射,M_RESERVED表示该内存区不能被换出,在设备驱动中虚拟页和物理页的关系应该是长期的,应该保留起来,不能随便被别的虚拟页换出(取消)。 2.2.2mmap操作接...
我们来算一下,比如一个物理页的属性和映射表的内容占用40个字节(linux代码中是struct page)。假设如当前大部分Linux上的页为4KB大小,系统有4GB物理内存,那么就有1048576个页,这么多页的映射表消耗的内存是1048576 * 40byte = 40MB。用40MB去管理4GB,还是可以接受的。 64位系统的虚拟内存布局 在AArch64下,页大...
➣首先是调用request_mem_region()申请资源,即告诉内核,本驱动正在使用这段物理内存,其他驱动不得访问它们。在设备驱动模块加载或open()函数中进行。 ➣接着讲寄存器地址通过ioremap()映射到内核空间虚拟地址,之后就可以通过Linux设备访问编程接口访问这些设备的寄存器了。在设备驱动初始化、write(),read(),ioctl()...
linux虚拟地址与物理地址映射的关系 Linux将4G的线性地址空间分为2部分,0~3G为user space,3G~4G为kernel space。 由于开启了分页机制,内核想要访问物理地址空间的话,必须先建立映射关系,然后通过虚拟地址来访问。为了能够访问所有的物理地址空间,就要将全部物理地址空间映射到1G的内核线性空间中,这显然不可能。于是,内...
每个进程都有自己的虚拟地址到物理地址的映射关系表。Linux内核会根据每个不同的进程去查找表:如进程A的虚拟空间地址K的物理地址是哪个。为了加快查找效率,虚拟内存的地址的不同段映射到了不同的entry上,页管理表有4级的也有3级的。最常用的4级页管理映射表如下: ...
每个进程都有自己的虚拟地址到物理地址的映射关系表。Linux内核会根据每个不同的进程去查找表:如进程A的虚拟空间地址K的物理地址是哪个。为了加快查找效率,虚拟内存的地址的不同段映射到了不同的entry上,页管理表有4级的也有3级的。最常用的4级页管理映射表如下: ...
每个进程都有自己的虚拟地址到物理地址的映射关系表。Linux内核会根据每个不同的进程去查找表:如进程A的虚拟空间地址K的物理地址是哪个。为了加快查找效率,虚拟内存的地址的不同段映射到了不同的entry上,页管理表有4级的也有3级的。最常用的4级页管理映射表如下: ...
原文地址:http://blog.chinaunix.net/uid-20792373-id-2979673.html 参考链接: Linux 虚拟地址与物理地址的映射关系分析 https://blog.csdn.net/ordeder/article/details/41630945 虚拟地址映射