Keras Applications是深度学习模型,与预训练的权重一起提供。这些模型可用于预测、特征提取和微调。权重在实例化模型的时候自动下载。它们被存储在~/.keras/models/中。在实例化之后,模型将根据Keras配置文件~/. Keras / Keras .json中设置的图像数据格式来构建。例如,如果您设置image_data_format=channels_last,那么...
通过自定义输入 tensor 构建 InceptionV3 fromkeras.applications.inception_v3importInceptionV3fromkeras.layersimportInput# this could also be the output a different Keras model or layerinput_tensor = Input(shape=(224,224,3))# this assumes K.image_data_format() == 'channels_last'model = InceptionV...
keras中的自定义keras.applications模型 在Keras中,自定义模型是通过继承keras.Model类来实现的。keras.applications模块提供了一些预训练的模型,如VGG16、ResNet等,但有时候我们需要根据自己的需求来构建自定义模型。 自定义keras.applications模型可以通过以下步骤完成: 导入所需的模块和库: 代码语言:txt 复制 import te...
keras.applications.music_tagger_crnn.MusicTaggerCRNN(weights='msd', input_tensor=None, include_top=True, classes=50) 该模型是一个卷积循环模型,以向量化的 MelSpectrogram 音乐数据为输入,能够输出音乐的风格。你可以用 keras.applications.musiic_tagger_crnn.preprocess_input 来将一个音乐文件向量化为 spect...
keras.applications.xception.Xception(include_top=True,weights='imagenet',input_tensor=None,input_shape=None,pooling=None,classes=1000) VGG16模型 VGG16模型,权重由ImageNet训练而来 该模型再Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序 ...
Keras Applications are deep learning models that are made available alongside pre-trained weights. Weights are downloaded automatically when instantiating a model. They are stored at~/.keras/models/. VGG16 keras.applications.vgg16.VGG16(include_top=True, weights='imagenet', ...
{{ message }} This repository has been archived by the owner on Nov 3, 2022. It is now read-only. keras-team / keras-applications Public archive Notifications You must be signed in to change notification settings Fork 910 Star 2k ...
master keras_applications __init__.py densenet.py efficientnet.py imagenet_utils.py inception_resnet_v2.py inception_v3.py mobilenet.py mobilenet_v2.py mobilenet_v3.py nasnet.py resnet.py resnet50.py resnet_common.py resnet_v2.py ...
Keras Applications is theapplicationsmodule of the Keras deep learning library. It provides model definitions and pre-trained weights for a number of popular archictures, such as VGG16, ResNet50, Xception, MobileNet, and more. Read the documentation at:https://keras.io/applications/ ...
所有40 个 Keras 应用程序模型(keras.applications命名空间)在所有后端都可用。KerasCV 和 KerasNLP 中的大量预训练模型也适用于所有后端。 其中包括: - BERT - OPT - Whisper - T5 - Stable Diffusion - YOLOv8 跨框架开发 Keras 3 能够让开发者创建在任何框架中都相同的组件(如任意自定义层或预训练模型),它...