一、实验目的 了解聚类算法和K-Means的基本概念 了解如何使用MindSpore进行K-Means聚类实验 二、实验内容与实验步骤 环境搭建 数据预处理 模型建立与训练 模型评估 这是一个完整的实验步骤,我们首先根据手册实现基础实验——鸢尾花聚类实验,接着改动实验中K的数值以及质心
画一个图来显示聚类的情况使用k-means聚类法将数据集聚成3组。画一个图来显示聚类的情况(b)部分:层次聚类使用全连接法对观察值进行聚类。使用平均和单连接对观测值进行聚类。绘制上述聚类方法的树状图。 使用R中的鸢尾花数据集k-means聚类 讨论和/或考虑对数据进行标准化。 在这种情况下,我们将标准化数据,因为花...
可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。 # 1.加载数据集 iris_data=load_iris() x=iris_data.data y=iris_data.target # 特征 columns=iris_data.feature_names# [...
为了对鸢尾花数据进行k-means算法聚类并使用matplotlib绘制聚类结果图,我们可以按照以下步骤进行: 1. 加载鸢尾花数据集 首先,我们需要加载鸢尾花数据集。鸢尾花数据集是机器学习和统计学中常用的一个数据集,包含了150个鸢尾花样本,每个样本有4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)以及对应的类别标签(Setosa...
使用R中的鸢尾花数据集k-means聚类 讨论和/或考虑对数据进行标准化。 代码语言:javascript 复制 data.frame("平均"=apply(iris[,1:4],2,mean"标准差"=apply(iris[,1:4],2,sd) 在这种情况下,我们将标准化数据,因为花瓣的宽度比其他所有的测量值小得多。
本练习问题包括:使用R中的鸢尾花数据集 (a)部分:k-means聚类 使用k-means聚类法将数据集聚成2组。 画一个图来显示聚类的情况 使用k-means聚类法将数据集聚成3组。 画一个图来显示聚类的情况 (b)部分:层次聚类 使用全连接法对观察值进行聚类。
问题:使用R中的鸢尾花数据集 (a)部分:k-means聚类 使用k-means聚类法将数据集聚成2组。 画一个图来显示聚类的情况 使用k-means聚类法将数据集聚成3组。 画一个图来显示聚类的情况 (b)部分:层次聚类 使用全连接法对观察值进行聚类。 使用平均和单连接对观测值进行聚类。
画一个图来显示聚类的情况 使用k-means聚类法将数据集聚成3组。 画一个图来显示聚类的情况 (b)部分:层次聚类 使用全连接法对观察值进行聚类。 使用平均和单连接对观测值进行聚类。 绘制上述聚类方法的树状图。 问题01:使用R中建立的鸢尾花数据集。
3. K-Means聚类算法实现 3.1 鸢尾花数据集 3.2 准备工作 3.3 代码实现 3.4 结果展示 4. 问题与解析 1. 作者 张勇 2. K-Means聚类算法 2.1 基本概念 K-Means聚类算法即K均值算法,是一种迭代求解的聚类分析算法,是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。给定一个数据点集合和需要的聚类数...