kmeans聚类可以说是聚类算法中最为常见的,它是基于划分方法聚类的,原理是先初始化k个簇类中心,基于计算样本与中心点的距离归纳各簇类下的所属样本,迭代实现样本与其归属的簇类中心的距离为最小的目标(如下目标函数)。 其优化算法步骤为: 1.随机选择 k 个样本作为初始簇类中心(k为超参,代表簇类的个数。可以凭先验知识、验证法确定取值)
};classKmeans{public:Kmeans(conststd::vector<Point>&data_set,intK=3,intiteration=100):data_set(data_set),K(K),iteration(iteration){this->num=data_set.size();}intnum;// 样本总数intK;// 聚类个数intiteration;// 最大迭代次数std::vector<Point>centers;// k个中心点类std::vector<Point...
原始K-means算法最开始随机选取数据集中K个点作为聚类中心, 而K-means++按照如下的思想选取K个聚类中心: 假设已经选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时:距离当前n个聚类中心越远的点会有更高的概率被选为第n+1个聚类中心。 在选取第一个聚类中心(n=1)时同样通过随机的方法。 可以说...
K均值(K-means)聚类算法是无监督聚类(聚类(clustering)是将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇(cluster)”)算法中的一种,也是最常用的聚类算法。K表示类别数,Means表示均值。K-means主要思想是在给定K值和若干样本(点)的情况下,把每个样本(点)分到离其最近的类簇中心点所代表...
K-means 首先,我们需要来明确一下分类与聚类两者的概念。 分类 在我看来,所谓分类,是根据给定类别的特征,把样本分到最为符合的类别里面,如垃圾分类,就是典型的分类,根据每种垃圾的特征,分为可回收、不可回收、厨余垃圾等等。这一概念里面隐含着一个特定前提,那就是类别已经事先给定了,从机器学习的角度来说,即...
K-means基础入门(c语言) K-means聚类算法是一种实现起来相对简单,应用广泛的迭代求解的聚类分析算法。其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会...
聚类(cluster)算法在机器学习中有若干种,本文讲的是K-means聚类算法,也叫K均值聚类算法。K是指将数据信息观察的对象聚成几类,means是指平均距离(在2.5.3中具体介绍)。 二、算法原理 为了易于理解,本文采用二维特征空间作为演示 1、何为特征 指观察某些事物或现象,能够被区分、记录和保存的信息(数据),例如:人的...
K-Means算法是一个计算成本很大的算法。K-Means算法的平均复杂度是O(k*n*T),其中k是超参数,即所需要输入的簇数,n是整个数据集中的样本量,T是所需要的迭代次数。在最坏的情况下,KMeans的复杂度可以写作O(n(k+2)/p),其中n是整个数据集中的样本量,p是特征总数。4. 聚类算法的模型评估指标 不同于...
K-means是聚类算法中最典型的一个,也是最简单、最常用的一个算法之一。这个算法主要的作用是将相似的样本自动归到一个类别中。通过设定合理的K KK值,能够决定不一样的聚类效果。 K-means算法原理与理解 01 基本原理 假定给定数据样本X ,包含了n 个对象 ...