一、聚类算法的简介 二、K-means聚类算法 三、K-means原理 1、K值的说明 2、K值的选择 3、距离度量 4、新质心的计算 5、是否停止K-means 6、目标函数 四、代码实现和详解 五、应用K-means算法对鸢尾花数据集进行聚类 1、数据准备 2、实现步骤 BML Codelab基于JupyterLab 全新架构升级,支持亮暗主题切换和丰富...
3.实现k-means算法的两种方式:手写算法过程;直接使用sklearn的聚类方法 三,实验过程 3.1导入相关包 numpy:python第三方库,用于科学计算 matplotlib:python第三方库,主要用于进行可视化 sklearn:python的重要机器学习库,其中封装了大量的机器学习算法,如:分类,回归,降维以及聚类 in [3] import matplotlib.pyplot as ...
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚...
K-Means聚类算法即K均值算法,是一种迭代求解的聚类分析算法,是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。给定一个数据点集合和需要的聚类数目K,K由用户指定,K均值算法根据某个距离函数反复把数据分入K个聚类中。 K均值算法优势在于它速度很快,原理简单、易于操作,但是也有缺点:(1)必须选择有多少...
四、聚类结果可视化 五、聚类模型评估 ① 轮廓系数 ② 卡林斯基 - 哈拉巴斯指数 ③ FMI评价法 一、数据集探索 iris数据集是常用的分类实验数据集,由Fisher,1936收集整理。iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包...
为了对鸢尾花数据进行k-means算法聚类并使用matplotlib绘制聚类结果图,我们可以按照以下步骤进行: 1. 加载鸢尾花数据集 首先,我们需要加载鸢尾花数据集。鸢尾花数据集是机器学习和统计学中常用的一个数据集,包含了150个鸢尾花样本,每个样本有4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)以及对应的类别标签(Setosa...
K-means算法是一种聚类算法,可以被用来解决鸢尾花的分类问题。下面我将详细解释这些术语和它们的应用。 首先,鸢尾花是一种植物,常见于欧洲和北非地区。鸢尾花的特征包括花瓣长度、花瓣宽度、萼片长度和萼片宽度等。这些特征可以用来对鸢尾花进行分类。 其次,机器学习是一种通过数据训练模型来自动化完成任务的方法。在...
最近我们被客户要求撰写关于鸢尾花iris数据集的研究报告,包括一些图形和统计输出。 本练习问题包括:使用R中的鸢尾花数据集 (a)部分:k-means聚类 使用k-means聚类法将数据集聚成2组。 画一个图来显示聚类的情况 使用k-means聚类法将数据集聚成3组。
本文本将研究采用主成分分析(Principal Component Analysis, PCA)和K均值聚类算法对鸢尾花数据集进行降维分析和模式识别。PCA用于数据降维的同时保持关键方差信息,聚类算法则用于探索数据的内在分组特征。分析表明PCA能够有效实现物种分类,在二维空间中保留95.8%的数据方差。K均值聚类识别出的模式与实际物种分类具有高度一致性...