# 4. 重复第2步和第3步,直到算法收敛,即中心点的位置与聚类的分配方案不再改变# K-means算法主函数,执行K-means聚类def kmeans(X, k, max_iters=100):# 初始化中心点centroids = initialize_centroids(X, k)for i in range(max_iters):# 将每个点分...
K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量K,选取欧式距离作为相似度指标,聚类目标实施的个类的聚类...
K-Means算法是一个计算成本很大的算法。K-Means算法的平均复杂度是O(k*n*T),其中k是超参数,即所需要输入的簇数,n是整个数据集中的样本量,T是所需要的迭代次数。在最坏的情况下,KMeans的复杂度可以写作O(n(k+2)/p),其中n是整个数据集中的样本量,p是特征总数。4. 聚类算法的模型评估指标 不同于...
随着循环次数逐渐收敛,不难证第1步随机的初始质心对结果无影响,即使得K-means算法具有普遍适用性。 可以看出,第六次更新后聚类相同,数据收敛。 大家可以尝试修改初始质心,查看结果是否一致。 sklearn库调用 上面手动复现了K-means代码的实现,但其实sklearn库有相应的封装函数,本节介绍其调用。sklearn.cluster.KMeans...
k-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据它们的属性分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。 k-means算法的基本过程如下所示: (1)任意选择k个初始中心c1,c2,...,ck。
sklearn.cluster.KMeans(n_clusters=K) 1. n_cluster:聚类个数(即K),默认值是8。2. init:初始化类中心的方法(即选择初始中心点的根据),默认“K-means++”,其他可选参数包括“random”。3. n_init:使用不同类中心运行的次数,默认值是10,即算法会初始化10次簇中心,然后返回最好的一次聚类结果。4. max...
1.k-means聚类 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类是建立在无类标记的数据上,是一种非监督的学习算法 k均值聚类算法(k-means clustering algorithm)是最著名的划分聚类算法,是一种迭代求解的聚类分析算法。由于简洁和效率使得他成为所有聚类算法...
k-means(k-均值)属于聚类算法之一,笼统点说,它的过程是这样的,先设置参数k,通过欧式距离进行计算,从而将数据集分成k个簇。为了更好地理解这个算法,下面更加详细的介绍这个算法的思想。算法思想 我们先过一下几个基本概念:(1) K值:即要将数据分为几个簇;(2) 质心:可理解为均值,即向量各个维度取...
算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 K个初始聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机地选取任意k个对象作为初始聚...
K-means算法是一种常用的聚类算法,其流程如下: 1.选择聚类的数量K。 2.随机选择K个数据点作为初始的聚类中心。 3.对于每个数据点,计算其与每个聚类中心的距离,将其归到距离最近的聚类中心所对应的类别。 4.对于每个聚类,计算其所有数据点的均值,作为新的聚类中心。 5.如果聚类中心发生变化,返回第3步;否则算法...