阅读并讨论K-Means算法的特点。K-Means算法介绍K-Means又称为K均值聚类,在1967年由美国加州大学的詹姆斯,麦昆教授首次提出,但类似的算法思想可以追溯到1957年的劳埃德算法。K-Means算法的流程如下图所示。随机选取K计算数据个体根据聚类中个点作为聚居与是与聚类中心的心所对应的类中心欧氏距离类进行分组计算每个分点...
1.K-Means聚类算法的优点包括:简单直观:K-Means算法理解起来相对简单,易于实现。计算效率较高:在处理大型数据集时,相比其他聚类算法如层次聚类,它的计算效率通常更高。适合寻找球形聚类:当聚类呈现出较为分散且大小相似的球形时,K-Means能够提供较好的聚类结果。2.K-Means聚类算法的缺点包括:需预先设定K值:K值需要在...
K-means的基本思想是将n个实例分成k个簇,使得同一簇内数据相似度高而不同簇之间数据相似度低。 算法流程 K-means的算法过程如下: 优点 K-means优点: ①是解决聚类问题的一种经典算法,简单、快速。 ②对处理大数据集,该算法保持可伸缩性和高效率。 ③当簇近似为高斯分布时,它的效果比较好。 缺点 K-means缺点...
Elkan K-Means算法提出利用两边之和大于第三边、两边之差小于第三边的三角形特性来减少距离的计算。 Elkan K-Means迭代速度比传统K-Means算法迭代速度有较大提高,但如果我们的样本特征是稀疏的,或者有缺失值的话,此种方法便不再使用。 5.大样本优化Mini Batch K-Means算法 传统的K-Means算法中需要计算所有样本点...
1.简单易懂:K-means算法原理简单,容易理解和实现,对于初学者来说,它是入门聚类分析的一个很好的选择。 2.计算效率高:K-means的时间复杂度大致是线性的(O(n)),这使得它在处理大数据集时比较有效率。 3.广泛应用:K-means可以用于各种数据聚类问题,并且在市场细分、社交网络分析、图像压缩等领域有广泛应用。
Kmeans聚类算法为一般的无监督的数据挖掘算法,它是在没有给定结果值的情况下,对于这类数据进行建模。聚类算法的目的就是根据已知的数据,将相似度较高的样本集中到各自的簇中。 Kmeans聚类思想 Kmeans就是不断的计算各样本点与簇中心之间的距离,直到收敛为止,大致分为以下4个步骤: ...
k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心。K-Means++算法就是对K-Means随机初始化质心的方法的优化: 从输入的数据点集合中随机选择一个点作为第一个聚类中心\mu_1 对于数据集中的每一个点x_i,计算它与已选择的聚类中心中最近聚类中心的距离 ...
1. K-Means的工作原理 作为聚类算法的典型代表,K-Means可以说是最简单的聚类算法,那它的聚类工作原理是什么呢?在K-Means算法中,簇的个数K是一个超参数,需要人为输入来确定。K-Means的核心任务就是根据设定好的K,找出K个最优的质心,并将离这些质心最近的数据分别分配到这些质心代表的簇中去。具体过程可以...
1 K-Means算法引入基于 相似性度量,将相近的样本归为同一个子集,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的代表。上个世…
1. k-means 算法简介 什么是 k-means 算法 k-means 算法是一种用于聚类分析的非监督学习算法。它通过将数据点划分为 k 个簇,使得每个簇中的数据点尽可能相似,而不同簇之间的数据点尽可能不同。这个算法的名称来源于其中的 k 个簇(clusters)和每个簇的均值(mean)。k-means 算法的工作原理 k-means ...