K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: 首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分...
K-Means算法是一个计算成本很大的算法。K-Means算法的平均复杂度是O(k*n*T),其中k是超参数,即所需要输入的簇数,n是整个数据集中的样本量,T是所需要的迭代次数。在最坏的情况下,KMeans的复杂度可以写作O(n(k+2)/p),其中n是整个数据集中的样本量,p是特征总数。4. 聚类算法的模型评估指标 不同于...
3.2 GMM与K-Means相比 高斯混合模型与K均值算法的相同点是: 它们都是可用于聚类的算法; 都需要 指定K值; 都是使用EM算法来求解; 都往往只能收敛于局部最优。 而它相比于K 均值算法的优点是,可以给出一个样本属于某类的概率是多少;不仅仅可以用于聚类,还可以用于概率密度的估计;并且可以用于生成新的样本点。 4...
k均值和k-means算法在本质上是相同的,它们都是无监督学习中的聚类算法。这种算法的目标是将数据集分割成k个不同的簇,每个簇内的数据点具有较高的相似性。两者的共同之处在于它们都是基于距离度量的。算法通过计算数据点之间的距离来评估它们的相似性,并据此进行聚类。通常,欧氏距离是默认的距离度量...
2. k-means(k均值)算法 2.1 算法过程 K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。 K-均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为: 首先选择𝐾个随机的点,称为聚类中心(cluster centroids); ...
K-Means算法是将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类。簇就是聚类的结果表现。 簇中所有数据的均值通常被称为这个簇的“质心”(Centroids)。在一个二维平面中,一簇数据点的质心的横坐标就是这一簇数据点的横坐标的均值,质...
之前讲解了有监督学习分类算法KNN,这期讲解无监督学习聚类算法K-Means(也称K-平均,K-均值),我们知道KNN和K-Means区别主要有两点: KNN是有监督,K-Means无监督,KNN是分类算法,K-Means是聚类算法。 预热 监督学习和无监督学习 对于"监督学习"(supervised learning),其训练样本是带有标记信息的,并且监督学习的目的是...
K均值(K-Means)算法,是一种无监督学习(Unsupervisedlearning)算法,其核心是聚类(Clustering),即把一组输入,通过K均值算法进行分类,输出分类结果。 由于K均值算法是无监督学习算法,故这里输入的样本和之前不同了,输入的样本只有样本本身,没有对应的样本分类结果,即这里的输入的仅仅是{x(1),x(2),…x(m)},每个...
K-Means算法是将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类。簇就是聚类的结果表现。簇中所有数据的均值通常被称为这个簇的“质心”(Centroids)。在一个二维平面中,一簇数据点的质心的横坐标就是这一簇数据点的横坐标的均值,质心...
K—Means算法是将簇中所有的均值作为质心,若簇中含有异常点,将导致均值偏离严重。 例如:当有一个数组:1,2,3,4,100的均值是22,显然距离大多数数据比较远 解决办法:该取中位数3为比较稳妥。这种取中位数的为簇中心的算法叫K-Mediods聚类 4.总结: