我们在ImageNet-1K的训练集上进行预训练,该数据集包含约120万张图像,分布在1000个类别中。默认情况下,Proteus 是从具有相同patch大小的基础模型中蒸馏出来的。按照DINOv2和 SynCLR的设置,我们在分类任务(ImageNet-1K 和12个细粒度分类数据集)以及密集预测任务(语义分割和深度估计)上评估我们的方法。 3.1 Accessing ...
单机单卡在imagenet 1k数据集上训练yolov5m-cls模型,每轮(Epoch)耗时 36分钟, 90轮共计54小时,对比4卡 A100的训练时间10:06小时,预测8卡3060 12G训练在imagenet 1k数据集上分类模型时间要远低于4卡A100(该结论待找机器验证)。 4xA100训练耗时 训练完成 YOLOv5x-cls模型训练 结论:感觉模型大了,例如,48.1M...
imagenet-1k是 ISLVRC2012的数据集,训练集大约是1281167张+标签,验证集是50000张图片加标签,最终打分的测试集是100000张图片,一共1000个类别。 imagenet-21k是WordNet架构组织收集的所有图片,大约1400万张,2…
ImageNet-1000.zip 是 ImageNet-1k验证集(val.zip)制作的,训练集和数据集都包含1000个分类,图片按8:2分割,这样就不存在不均衡数据。 ImageNet-100.zip 与 ImageNet-1000.zip差不多,不过只取了前100个分类,训练速度要快很多。 展开 文件列表 focalnet_base_srf.pdparams focalnet_small_srf.pdparams focalnet...
Imagenet-1K与Imagenet-21K是两个规模庞大的图像数据集,各自在深度学习领域有着独特地位与应用。Imagenet-1K源自于2012年ISLVRC数据集,它汇集了约1281167张训练图像,每张都标注了类别,验证集则包含50000张图片,带有标签。最终的测试集则由100000张图像组成,覆盖了1000个不同的类别。相比之下,Image...
由于官方的ImageNet验证集被用作测试集,因此实验中使用大约2%的ImageNet训练集作为构建贪婪的汤的保留验证集。实验结果对比了汤的策略,可以看到贪婪汤需要更少的模型就能达到与在保留的验证集上选择最佳个体模型相同的精度。X轴为超参数随机搜索中所考虑的模型数量,Y轴为各种模型选择方法的准确率。所有的方法在推理...
重走长征路-PaddleClas训练ImageNet 1K数据集实践 缘起 对我这个新手来说,拦路虎主要是两个: 解决方法: 实践步骤分解 一、玩转ImageNet数据集 二、 万里挑一选模型 初期选型Swin Transformer 最终选型PP-LCNet模型 三、 万里长征:训练 后台训练设置 开始后台训练 四、 胜利会师:评估、预测和推理 模型评估 模型预测...
以下是使用imagenet 1k的步骤: 1.下载和安装imagenet 1k数据库。您可以从Google Cloud Storage或Open Images数据集中下载数据库。安装过程需要一些时间,具体取决于您的计算机配置。 2.准备您的深度学习模型。您可以使用TensorFlow、PyTorch或其他深度学习框架来构建和训练您的模型。确保您的模型能够处理大型图像数据。 3...
ImageNet-1K数据集的压缩实现了关键性突破,Top-1精度首次超过60%,标志着大规模数据集蒸馏的转折点。MBZUAI和CMU团队的研究成果SRe2L是首个成功处理高分辨率大规模数据集压缩的框架,它将原始的1.2M样本压缩至0.05M(压缩比20倍),并且在保持高精度的同时,显著降低了训练成本和内存需求。这一创新...
在full ImageNet-1K 数据集上的结果 可以看到,在相同 IPC 情况下,本文实验结果远超之前方法 TESLA。同时,对于该方法蒸馏得到的数据集,当模型结构越大,训练得到的精度越高,体现了很好的一致性和扩展能力。 下图是性能对比的可视化结果,可以看到:对于之前方法 TESLA 蒸馏得到的数据集,当模型越大,性能反而越低,这对...