Given the remarkable semantic understanding capabilities of large language models (LLMs), this paper proposes a novel KGR model using LLMs augmented GNNs (LGKGR), which aims to utilize LLMs to enhance the graph
背景本文开源代码地址: https://github.com/CurryTang/Graph-LLM Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs是来自MSU、百度等单位的一项工作,如何将LLMs应用在graph上面(…
数据分析与AI丨Graph+LLM 如何重塑传统 BI 的未来 #AI# 导读:随着企业数据复杂度的指数级增长,传统 #BI 工具在动态关系分析、多模态数据处理及自然语言交互等方面的缺陷日益凸显。本文提出一种基于#图数据库(Graph Database)与#大语言模型(LLM)深度融合的新型数据分析架构,通过引入#语义增强技术(RDFS/OWL)...
(arXiv 2023.08) Graph Meets LLMs: Towards Large Graph Models [paper] (arXiv 2023.10) Towards Graph Foundation Models: A Survey and Beyond [paper] (arXiv 2024.02) Towards Versatile Graph Learning Approach: from the Perspective of Large Language Models [paper] (arXiv 2024.04) Graph Machine Lear...
[TPAMI 2025] Graph Foundation Models: Concepts, Opportunities and Challenges. [pdf] [arXiv 2023.8] Graph Meets LLMs: Towards Large Graph Models. [pdf][paperlist] [arXiv 2023.10] Integrating Graphs with Large Language Models: Methods and Prospects. [pdf] [arXiv 2023.10] Towards Graph ...
GraphGPT: Graph Instruction Tuning for Large Language Models是香港大学研究人员发表在SIGIR 2024的一项工作,本文作者研究的任务是如何创建Graph LLMs以及如何做graph instruction tuning,之前已经读过好几个 Graph + LLMs 的工作,本文提出的 GraphGPT 框架特点是做graph instruction tuning。 Note: 1. 对于多模态模...
2023 NeurIPS New Frontiers in Graph Learning Workshop -Graph Meets LLMs: Towards Large Graph Models 论文地址:https://arxiv.org/abs/2308.14522 图大模型是一种在图领域应用的大模型,具有扩展定律特征,能够理解图的结构和属性,具备处理新颖图数据集和图推理能力,广泛应用于多个领域。
Connect data as it's stored with Neo4j. Perform powerful, complex queries at scale and speed with our graph data platform.
创新的图结构:通过引入图结构,显著提高了知识检索的精度和上下文的深度,使LLMs能够更有效地处理复杂的多跳查询。 不足与反思 单模态限制:当前的框架仅限于文本上下文,忽略了多模态数据集成带来的挑战和机会。未来工作将扩展到多模态评估,测试基于图的检索和推理机制在混合知识表示下的泛化能力。
Graph + LLM 实践指南|如何使用自然语言进行知识图谱构建和查询 随着 ChatGPT 等 AI 智能应用在全球范围内的风靡,大语言模型技术(Large Language Model,简称 LLM)受到各行业企业和个人用户的广泛关注。图数据库凭借图形格式组织和连接信息的方式,能够帮助大语言模型更好地理解实体间的关系,提升自己的表达和推理...