当训练时GPU利用率很低而内存占比很高时,可以尝试以下方法提高GPU利用率: 批量化操作:将输入数据进行批量处理,可以减少传输和计算的开销。使用PyTorch的DataLoader,并设置适当的batch_size,可以同时处理多个样本,提高GPU利用率。 异步数据加载:使用PyTorch的DataLoader中的num_workers参数,设置合适的数值,可以实现在数据加载...